Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB

Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2018-07, Vol.14 (7), p.e1007531-e1007531
Hauptverfasser: Rojas-Tapias, Daniel F, Helmann, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007531
container_issue 7
container_start_page e1007531
container_title PLoS genetics
container_volume 14
creator Rojas-Tapias, Daniel F
Helmann, John D
description Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways.
doi_str_mv 10.1371/journal.pgen.1007531
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250659568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A548630081</galeid><doaj_id>oai_doaj_org_article_17fd273c3e8c40f3be166fbadb9e8337</doaj_id><sourcerecordid>A548630081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-689e6ed0d158f2c91389df81d0f1404f190b18a1d0007cbf56fddafe56775c753</originalsourceid><addsrcrecordid>eNqVk11rFDEUhgdRbK3-A9GAIHqxazKZJDM3Qlv8WCgWXBW8Cpl87KZkJ9Mko9Vfb7Y7LTvSC2VgJpM8503ec3KK4imCc4QZenPhh9AJN-9XupsjCBnB6F5xiAjBM1bB6v7e-KB4FOMFhJjUDXtYHGAIIcIlOSzUMonWOvtbJOs74A04EdI6N0QQhzbllQiW_RUYOqUDkNo58FPkV0xBxwiCvhxsHoG01kB0yc6EEn3yAfTBJ2078N2Gk8fFAyNc1E_G71Hx9f27L6cfZ2fnHxanx2czyUqaZrRuNNUKKkRqU8oG4bpRpkYKGpRNGNTAFtUi_2e3sjWEGqWE0YQyRmT2f1Q83-n2zkc-JijysiSQkobQOhOLHaG8uOB9sBsRfnEvLL-e8GHFRUhWOs0RM6pkWGJdywoa3GpEqWmFahtdY8yy1ttxt6HdaCV1l4JwE9HpSmfXfOV_cAoJo9fHfTUKBH856Jj4xsZtikWn_ZDPDRksMYW4yuiLv9C73Y3USmQDtjM-7yu3ovyYVDXNZa9RpuZ3UPlRemOl77SxeX4S8HoSkJmkr9JKDDHyxfLzf7Cf_p09_zZlX-6xay1cWkfvhu2tjVOw2oEy-BiDNrcFQZBvG-cmc3zbOHxsnBz2bL-Yt0E3nYL_APq-Eo0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250659568</pqid></control><display><type>article</type><title>Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rojas-Tapias, Daniel F ; Helmann, John D</creator><contributor>Kearns, Daniel B.</contributor><creatorcontrib>Rojas-Tapias, Daniel F ; Helmann, John D ; Kearns, Daniel B.</creatorcontrib><description>Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007531</identifier><identifier>PMID: 30001325</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacillus subtilis ; Bacillus subtilis - physiology ; Bacterial cell walls ; Bacterial proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cell Wall - drug effects ; Cell Wall - metabolism ; Cell walls ; Disulfides - pharmacology ; Gene expression ; Gene Expression Regulation, Bacterial - drug effects ; Gene Expression Regulation, Bacterial - physiology ; Gene regulation ; Genetic aspects ; Genetic research ; Gram-positive bacteria ; Medicine and Health Sciences ; Microbiological research ; Physiological aspects ; Protein Stability ; Proteins ; Regulon - physiology ; Research and Analysis Methods ; RNA polymerase ; Secretion ; Sigma factor ; Sigma Factor - metabolism ; Signal transduction ; Stress (Physiology) ; Stress response ; Stress, Physiological - physiology ; Transcription activation ; Transcription factors ; Up-Regulation</subject><ispartof>PLoS genetics, 2018-07, Vol.14 (7), p.e1007531-e1007531</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Rojas-Tapias, Helmann. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Rojas-Tapias, Helmann 2018 Rojas-Tapias, Helmann</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-689e6ed0d158f2c91389df81d0f1404f190b18a1d0007cbf56fddafe56775c753</citedby><cites>FETCH-LOGICAL-c726t-689e6ed0d158f2c91389df81d0f1404f190b18a1d0007cbf56fddafe56775c753</cites><orcidid>0000-0002-4051-7907 ; 0000-0002-3832-3249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30001325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kearns, Daniel B.</contributor><creatorcontrib>Rojas-Tapias, Daniel F</creatorcontrib><creatorcontrib>Helmann, John D</creatorcontrib><title>Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways.</description><subject>Adaptation</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - physiology</subject><subject>Bacterial cell walls</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell Wall - drug effects</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Disulfides - pharmacology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Expression Regulation, Bacterial - physiology</subject><subject>Gene regulation</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Gram-positive bacteria</subject><subject>Medicine and Health Sciences</subject><subject>Microbiological research</subject><subject>Physiological aspects</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Regulon - physiology</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>Secretion</subject><subject>Sigma factor</subject><subject>Sigma Factor - metabolism</subject><subject>Signal transduction</subject><subject>Stress (Physiology)</subject><subject>Stress response</subject><subject>Stress, Physiological - physiology</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Up-Regulation</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11rFDEUhgdRbK3-A9GAIHqxazKZJDM3Qlv8WCgWXBW8Cpl87KZkJ9Mko9Vfb7Y7LTvSC2VgJpM8503ec3KK4imCc4QZenPhh9AJN-9XupsjCBnB6F5xiAjBM1bB6v7e-KB4FOMFhJjUDXtYHGAIIcIlOSzUMonWOvtbJOs74A04EdI6N0QQhzbllQiW_RUYOqUDkNo58FPkV0xBxwiCvhxsHoG01kB0yc6EEn3yAfTBJ2078N2Gk8fFAyNc1E_G71Hx9f27L6cfZ2fnHxanx2czyUqaZrRuNNUKKkRqU8oG4bpRpkYKGpRNGNTAFtUi_2e3sjWEGqWE0YQyRmT2f1Q83-n2zkc-JijysiSQkobQOhOLHaG8uOB9sBsRfnEvLL-e8GHFRUhWOs0RM6pkWGJdywoa3GpEqWmFahtdY8yy1ttxt6HdaCV1l4JwE9HpSmfXfOV_cAoJo9fHfTUKBH856Jj4xsZtikWn_ZDPDRksMYW4yuiLv9C73Y3USmQDtjM-7yu3ovyYVDXNZa9RpuZ3UPlRemOl77SxeX4S8HoSkJmkr9JKDDHyxfLzf7Cf_p09_zZlX-6xay1cWkfvhu2tjVOw2oEy-BiDNrcFQZBvG-cmc3zbOHxsnBz2bL-Yt0E3nYL_APq-Eo0</recordid><startdate>20180712</startdate><enddate>20180712</enddate><creator>Rojas-Tapias, Daniel F</creator><creator>Helmann, John D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4051-7907</orcidid><orcidid>https://orcid.org/0000-0002-3832-3249</orcidid></search><sort><creationdate>20180712</creationdate><title>Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB</title><author>Rojas-Tapias, Daniel F ; Helmann, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-689e6ed0d158f2c91389df81d0f1404f190b18a1d0007cbf56fddafe56775c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - physiology</topic><topic>Bacterial cell walls</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell Wall - drug effects</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Disulfides - pharmacology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Expression Regulation, Bacterial - physiology</topic><topic>Gene regulation</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Gram-positive bacteria</topic><topic>Medicine and Health Sciences</topic><topic>Microbiological research</topic><topic>Physiological aspects</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Regulon - physiology</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>Secretion</topic><topic>Sigma factor</topic><topic>Sigma Factor - metabolism</topic><topic>Signal transduction</topic><topic>Stress (Physiology)</topic><topic>Stress response</topic><topic>Stress, Physiological - physiology</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas-Tapias, Daniel F</creatorcontrib><creatorcontrib>Helmann, John D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas-Tapias, Daniel F</au><au>Helmann, John D</au><au>Kearns, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-07-12</date><risdate>2018</risdate><volume>14</volume><issue>7</issue><spage>e1007531</spage><epage>e1007531</epage><pages>e1007531-e1007531</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30001325</pmid><doi>10.1371/journal.pgen.1007531</doi><orcidid>https://orcid.org/0000-0002-4051-7907</orcidid><orcidid>https://orcid.org/0000-0002-3832-3249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2018-07, Vol.14 (7), p.e1007531-e1007531
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2250659568
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation
Anti-Bacterial Agents - pharmacology
Antibiotics
Bacillus subtilis
Bacillus subtilis - physiology
Bacterial cell walls
Bacterial proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology and Life Sciences
Cell Wall - drug effects
Cell Wall - metabolism
Cell walls
Disulfides - pharmacology
Gene expression
Gene Expression Regulation, Bacterial - drug effects
Gene Expression Regulation, Bacterial - physiology
Gene regulation
Genetic aspects
Genetic research
Gram-positive bacteria
Medicine and Health Sciences
Microbiological research
Physiological aspects
Protein Stability
Proteins
Regulon - physiology
Research and Analysis Methods
RNA polymerase
Secretion
Sigma factor
Sigma Factor - metabolism
Signal transduction
Stress (Physiology)
Stress response
Stress, Physiological - physiology
Transcription activation
Transcription factors
Up-Regulation
title Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Bacillus%20subtilis%20Spx%20under%20cell%20wall%20stress%20requires%20the%20anti-adaptor%20protein%20YirB&rft.jtitle=PLoS%20genetics&rft.au=Rojas-Tapias,%20Daniel%20F&rft.date=2018-07-12&rft.volume=14&rft.issue=7&rft.spage=e1007531&rft.epage=e1007531&rft.pages=e1007531-e1007531&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007531&rft_dat=%3Cgale_plos_%3EA548630081%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250659568&rft_id=info:pmid/30001325&rft_galeid=A548630081&rft_doaj_id=oai_doaj_org_article_17fd273c3e8c40f3be166fbadb9e8337&rfr_iscdi=true