Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies
Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been us...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2019-06, Vol.15 (6), p.e1007043-e1007043 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007043 |
---|---|
container_issue | 6 |
container_start_page | e1007043 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Piray, Payam Dezfouli, Amir Heskes, Tom Frank, Michael J Daw, Nathaniel D |
description | Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test. |
doi_str_mv | 10.1371/journal.pcbi.1007043 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250648688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595055437</galeid><doaj_id>oai_doaj_org_article_b3fb8b705f89486c936a20b6aa354621</doaj_id><sourcerecordid>A595055437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-9a0719ea723f2137d2b3566f7067d32002e7ec01a06febe28b1aead3b7832f413</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfyI7eSCVCqgK1Ug8Tgia-KMU6-SOLUTRL893m5adREX5IMf8_vPeB5Z9pySNeWKvt36OQzQrUdTuzUlRJGCP8iOqRB8pbgoH947H2VPYtwSko6VfJwdccooVSU_zn6eOwwQzKUz0OXv4RqjgyF3g8WAg8Hc-pAbP5g5pPuU977BLrdumtzQ5jA0ydiPEFz0ww3bBj-PeZzmxmF8mj2y0EV8tuwn2Y-PH76fna8uvnzanJ1erIysqmlVAVG0QlCMW5aSa1jNhZRWEakazghhqNAQCkRarJGVNQWEhtcpBWYLyk-yl3u_Y-ejXioTNWOCyKKUZZmIzZ5oPGz1GFwP4Vp7cPrmwYdWQ5ic6VDX3NZlrYiwZZXEpuISGKklABeFZLto75Zoc91jY1JdAnQHTg8tg7vUrf-lpSgpkyQ5eL04CP5qxjjp3kWDXQcD-nn374IXVVVImdBXf6H_zm69p1pICaTm-RTXpNVg71L30Lr0fioqQYQouEqCNweCxEz4e2phjlFvvn39D_bzIVvsWRN8jAHtXVUo0buxvf2-3o2tXsY2yV7cr-id6HZO-R-N_Ol3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250648688</pqid></control><display><type>article</type><title>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Piray, Payam ; Dezfouli, Amir ; Heskes, Tom ; Frank, Michael J ; Daw, Nathaniel D</creator><contributor>Berry, Hugues</contributor><creatorcontrib>Piray, Payam ; Dezfouli, Amir ; Heskes, Tom ; Frank, Michael J ; Daw, Nathaniel D ; Berry, Hugues</creatorcontrib><description>Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007043</identifier><identifier>PMID: 31211783</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Computation ; Computational Biology - methods ; Computational neuroscience ; Computer Simulation ; Data analysis ; Decision making ; Decision Making - physiology ; Estimates ; Humans ; Learning - physiology ; Mathematical models ; Medical imaging ; Medicine and Health Sciences ; Models, Neurological ; Nervous system ; Neurological research ; Neurosciences ; Normal distribution ; Outliers (statistics) ; Parameter estimation ; Parkinson's disease ; Physical Sciences ; Population ; Population (statistical) ; Research and Analysis Methods ; Social Sciences ; Software ; Statistical inference ; Statistical methods</subject><ispartof>PLoS computational biology, 2019-06, Vol.15 (6), p.e1007043-e1007043</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Piray et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Piray et al 2019 Piray et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-9a0719ea723f2137d2b3566f7067d32002e7ec01a06febe28b1aead3b7832f413</citedby><orcidid>0000-0002-8100-6628 ; 0000-0002-3398-5235 ; 0000-0001-5029-1430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581260/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581260/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31211783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Berry, Hugues</contributor><creatorcontrib>Piray, Payam</creatorcontrib><creatorcontrib>Dezfouli, Amir</creatorcontrib><creatorcontrib>Heskes, Tom</creatorcontrib><creatorcontrib>Frank, Michael J</creatorcontrib><creatorcontrib>Daw, Nathaniel D</creatorcontrib><title>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Computation</subject><subject>Computational Biology - methods</subject><subject>Computational neuroscience</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Decision Making - physiology</subject><subject>Estimates</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Models, Neurological</subject><subject>Nervous system</subject><subject>Neurological research</subject><subject>Neurosciences</subject><subject>Normal distribution</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parkinson's disease</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfyI7eSCVCqgK1Ug8Tgia-KMU6-SOLUTRL893m5adREX5IMf8_vPeB5Z9pySNeWKvt36OQzQrUdTuzUlRJGCP8iOqRB8pbgoH947H2VPYtwSko6VfJwdccooVSU_zn6eOwwQzKUz0OXv4RqjgyF3g8WAg8Hc-pAbP5g5pPuU977BLrdumtzQ5jA0ydiPEFz0ww3bBj-PeZzmxmF8mj2y0EV8tuwn2Y-PH76fna8uvnzanJ1erIysqmlVAVG0QlCMW5aSa1jNhZRWEakazghhqNAQCkRarJGVNQWEhtcpBWYLyk-yl3u_Y-ejXioTNWOCyKKUZZmIzZ5oPGz1GFwP4Vp7cPrmwYdWQ5ic6VDX3NZlrYiwZZXEpuISGKklABeFZLto75Zoc91jY1JdAnQHTg8tg7vUrf-lpSgpkyQ5eL04CP5qxjjp3kWDXQcD-nn374IXVVVImdBXf6H_zm69p1pICaTm-RTXpNVg71L30Lr0fioqQYQouEqCNweCxEz4e2phjlFvvn39D_bzIVvsWRN8jAHtXVUo0buxvf2-3o2tXsY2yV7cr-id6HZO-R-N_Ol3</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Piray, Payam</creator><creator>Dezfouli, Amir</creator><creator>Heskes, Tom</creator><creator>Frank, Michael J</creator><creator>Daw, Nathaniel D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8100-6628</orcidid><orcidid>https://orcid.org/0000-0002-3398-5235</orcidid><orcidid>https://orcid.org/0000-0001-5029-1430</orcidid></search><sort><creationdate>20190601</creationdate><title>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</title><author>Piray, Payam ; Dezfouli, Amir ; Heskes, Tom ; Frank, Michael J ; Daw, Nathaniel D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-9a0719ea723f2137d2b3566f7067d32002e7ec01a06febe28b1aead3b7832f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Computation</topic><topic>Computational Biology - methods</topic><topic>Computational neuroscience</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Decision Making - physiology</topic><topic>Estimates</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Models, Neurological</topic><topic>Nervous system</topic><topic>Neurological research</topic><topic>Neurosciences</topic><topic>Normal distribution</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parkinson's disease</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piray, Payam</creatorcontrib><creatorcontrib>Dezfouli, Amir</creatorcontrib><creatorcontrib>Heskes, Tom</creatorcontrib><creatorcontrib>Frank, Michael J</creatorcontrib><creatorcontrib>Daw, Nathaniel D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piray, Payam</au><au>Dezfouli, Amir</au><au>Heskes, Tom</au><au>Frank, Michael J</au><au>Daw, Nathaniel D</au><au>Berry, Hugues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>15</volume><issue>6</issue><spage>e1007043</spage><epage>e1007043</epage><pages>e1007043-e1007043</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31211783</pmid><doi>10.1371/journal.pcbi.1007043</doi><orcidid>https://orcid.org/0000-0002-8100-6628</orcidid><orcidid>https://orcid.org/0000-0002-3398-5235</orcidid><orcidid>https://orcid.org/0000-0001-5029-1430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-06, Vol.15 (6), p.e1007043-e1007043 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250648688 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bayes Theorem Bayesian analysis Biology and Life Sciences Computation Computational Biology - methods Computational neuroscience Computer Simulation Data analysis Decision making Decision Making - physiology Estimates Humans Learning - physiology Mathematical models Medical imaging Medicine and Health Sciences Models, Neurological Nervous system Neurological research Neurosciences Normal distribution Outliers (statistics) Parameter estimation Parkinson's disease Physical Sciences Population Population (statistical) Research and Analysis Methods Social Sciences Software Statistical inference Statistical methods |
title | Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Bayesian%20inference%20for%20concurrent%20model%20fitting%20and%20comparison%20for%20group%20studies&rft.jtitle=PLoS%20computational%20biology&rft.au=Piray,%20Payam&rft.date=2019-06-01&rft.volume=15&rft.issue=6&rft.spage=e1007043&rft.epage=e1007043&rft.pages=e1007043-e1007043&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007043&rft_dat=%3Cgale_plos_%3EA595055437%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250648688&rft_id=info:pmid/31211783&rft_galeid=A595055437&rft_doaj_id=oai_doaj_org_article_b3fb8b705f89486c936a20b6aa354621&rfr_iscdi=true |