Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies

Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-06, Vol.15 (6), p.e1007043-e1007043
Hauptverfasser: Piray, Payam, Dezfouli, Amir, Heskes, Tom, Frank, Michael J, Daw, Nathaniel D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007043
container_issue 6
container_start_page e1007043
container_title PLoS computational biology
container_volume 15
creator Piray, Payam
Dezfouli, Amir
Heskes, Tom
Frank, Michael J
Daw, Nathaniel D
description Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.
doi_str_mv 10.1371/journal.pcbi.1007043
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250648688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595055437</galeid><doaj_id>oai_doaj_org_article_b3fb8b705f89486c936a20b6aa354621</doaj_id><sourcerecordid>A595055437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-9a0719ea723f2137d2b3566f7067d32002e7ec01a06febe28b1aead3b7832f413</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfyI7eSCVCqgK1Ug8Tgia-KMU6-SOLUTRL893m5adREX5IMf8_vPeB5Z9pySNeWKvt36OQzQrUdTuzUlRJGCP8iOqRB8pbgoH947H2VPYtwSko6VfJwdccooVSU_zn6eOwwQzKUz0OXv4RqjgyF3g8WAg8Hc-pAbP5g5pPuU977BLrdumtzQ5jA0ydiPEFz0ww3bBj-PeZzmxmF8mj2y0EV8tuwn2Y-PH76fna8uvnzanJ1erIysqmlVAVG0QlCMW5aSa1jNhZRWEakazghhqNAQCkRarJGVNQWEhtcpBWYLyk-yl3u_Y-ejXioTNWOCyKKUZZmIzZ5oPGz1GFwP4Vp7cPrmwYdWQ5ic6VDX3NZlrYiwZZXEpuISGKklABeFZLto75Zoc91jY1JdAnQHTg8tg7vUrf-lpSgpkyQ5eL04CP5qxjjp3kWDXQcD-nn374IXVVVImdBXf6H_zm69p1pICaTm-RTXpNVg71L30Lr0fioqQYQouEqCNweCxEz4e2phjlFvvn39D_bzIVvsWRN8jAHtXVUo0buxvf2-3o2tXsY2yV7cr-id6HZO-R-N_Ol3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250648688</pqid></control><display><type>article</type><title>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Piray, Payam ; Dezfouli, Amir ; Heskes, Tom ; Frank, Michael J ; Daw, Nathaniel D</creator><contributor>Berry, Hugues</contributor><creatorcontrib>Piray, Payam ; Dezfouli, Amir ; Heskes, Tom ; Frank, Michael J ; Daw, Nathaniel D ; Berry, Hugues</creatorcontrib><description>Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007043</identifier><identifier>PMID: 31211783</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Computation ; Computational Biology - methods ; Computational neuroscience ; Computer Simulation ; Data analysis ; Decision making ; Decision Making - physiology ; Estimates ; Humans ; Learning - physiology ; Mathematical models ; Medical imaging ; Medicine and Health Sciences ; Models, Neurological ; Nervous system ; Neurological research ; Neurosciences ; Normal distribution ; Outliers (statistics) ; Parameter estimation ; Parkinson's disease ; Physical Sciences ; Population ; Population (statistical) ; Research and Analysis Methods ; Social Sciences ; Software ; Statistical inference ; Statistical methods</subject><ispartof>PLoS computational biology, 2019-06, Vol.15 (6), p.e1007043-e1007043</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Piray et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Piray et al 2019 Piray et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-9a0719ea723f2137d2b3566f7067d32002e7ec01a06febe28b1aead3b7832f413</citedby><orcidid>0000-0002-8100-6628 ; 0000-0002-3398-5235 ; 0000-0001-5029-1430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581260/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581260/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31211783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Berry, Hugues</contributor><creatorcontrib>Piray, Payam</creatorcontrib><creatorcontrib>Dezfouli, Amir</creatorcontrib><creatorcontrib>Heskes, Tom</creatorcontrib><creatorcontrib>Frank, Michael J</creatorcontrib><creatorcontrib>Daw, Nathaniel D</creatorcontrib><title>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Computation</subject><subject>Computational Biology - methods</subject><subject>Computational neuroscience</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Decision Making - physiology</subject><subject>Estimates</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Models, Neurological</subject><subject>Nervous system</subject><subject>Neurological research</subject><subject>Neurosciences</subject><subject>Normal distribution</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parkinson's disease</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfyI7eSCVCqgK1Ug8Tgia-KMU6-SOLUTRL893m5adREX5IMf8_vPeB5Z9pySNeWKvt36OQzQrUdTuzUlRJGCP8iOqRB8pbgoH947H2VPYtwSko6VfJwdccooVSU_zn6eOwwQzKUz0OXv4RqjgyF3g8WAg8Hc-pAbP5g5pPuU977BLrdumtzQ5jA0ydiPEFz0ww3bBj-PeZzmxmF8mj2y0EV8tuwn2Y-PH76fna8uvnzanJ1erIysqmlVAVG0QlCMW5aSa1jNhZRWEakazghhqNAQCkRarJGVNQWEhtcpBWYLyk-yl3u_Y-ejXioTNWOCyKKUZZmIzZ5oPGz1GFwP4Vp7cPrmwYdWQ5ic6VDX3NZlrYiwZZXEpuISGKklABeFZLto75Zoc91jY1JdAnQHTg8tg7vUrf-lpSgpkyQ5eL04CP5qxjjp3kWDXQcD-nn374IXVVVImdBXf6H_zm69p1pICaTm-RTXpNVg71L30Lr0fioqQYQouEqCNweCxEz4e2phjlFvvn39D_bzIVvsWRN8jAHtXVUo0buxvf2-3o2tXsY2yV7cr-id6HZO-R-N_Ol3</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Piray, Payam</creator><creator>Dezfouli, Amir</creator><creator>Heskes, Tom</creator><creator>Frank, Michael J</creator><creator>Daw, Nathaniel D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8100-6628</orcidid><orcidid>https://orcid.org/0000-0002-3398-5235</orcidid><orcidid>https://orcid.org/0000-0001-5029-1430</orcidid></search><sort><creationdate>20190601</creationdate><title>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</title><author>Piray, Payam ; Dezfouli, Amir ; Heskes, Tom ; Frank, Michael J ; Daw, Nathaniel D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-9a0719ea723f2137d2b3566f7067d32002e7ec01a06febe28b1aead3b7832f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Computation</topic><topic>Computational Biology - methods</topic><topic>Computational neuroscience</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Decision Making - physiology</topic><topic>Estimates</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Models, Neurological</topic><topic>Nervous system</topic><topic>Neurological research</topic><topic>Neurosciences</topic><topic>Normal distribution</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parkinson's disease</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piray, Payam</creatorcontrib><creatorcontrib>Dezfouli, Amir</creatorcontrib><creatorcontrib>Heskes, Tom</creatorcontrib><creatorcontrib>Frank, Michael J</creatorcontrib><creatorcontrib>Daw, Nathaniel D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piray, Payam</au><au>Dezfouli, Amir</au><au>Heskes, Tom</au><au>Frank, Michael J</au><au>Daw, Nathaniel D</au><au>Berry, Hugues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>15</volume><issue>6</issue><spage>e1007043</spage><epage>e1007043</epage><pages>e1007043-e1007043</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Computational modeling plays an important role in modern neuroscience research. Much previous research has relied on statistical methods, separately, to address two problems that are actually interdependent. First, given a particular computational model, Bayesian hierarchical techniques have been used to estimate individual variation in parameters over a population of subjects, leveraging their population-level distributions. Second, candidate models are themselves compared, and individual variation in the expressed model estimated, according to the fits of the models to each subject. The interdependence between these two problems arises because the relevant population for estimating parameters of a model depends on which other subjects express the model. Here, we propose a hierarchical Bayesian inference (HBI) framework for concurrent model comparison, parameter estimation and inference at the population level, combining previous approaches. We show that this framework has important advantages for both parameter estimation and model comparison theoretically and experimentally. The parameters estimated by the HBI show smaller errors compared to other methods. Model comparison by HBI is robust against outliers and is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of our theory enables researchers to make inference on group-level parameters by performing HBI t-test.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31211783</pmid><doi>10.1371/journal.pcbi.1007043</doi><orcidid>https://orcid.org/0000-0002-8100-6628</orcidid><orcidid>https://orcid.org/0000-0002-3398-5235</orcidid><orcidid>https://orcid.org/0000-0001-5029-1430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-06, Vol.15 (6), p.e1007043-e1007043
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250648688
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Computation
Computational Biology - methods
Computational neuroscience
Computer Simulation
Data analysis
Decision making
Decision Making - physiology
Estimates
Humans
Learning - physiology
Mathematical models
Medical imaging
Medicine and Health Sciences
Models, Neurological
Nervous system
Neurological research
Neurosciences
Normal distribution
Outliers (statistics)
Parameter estimation
Parkinson's disease
Physical Sciences
Population
Population (statistical)
Research and Analysis Methods
Social Sciences
Software
Statistical inference
Statistical methods
title Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Bayesian%20inference%20for%20concurrent%20model%20fitting%20and%20comparison%20for%20group%20studies&rft.jtitle=PLoS%20computational%20biology&rft.au=Piray,%20Payam&rft.date=2019-06-01&rft.volume=15&rft.issue=6&rft.spage=e1007043&rft.epage=e1007043&rft.pages=e1007043-e1007043&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007043&rft_dat=%3Cgale_plos_%3EA595055437%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250648688&rft_id=info:pmid/31211783&rft_galeid=A595055437&rft_doaj_id=oai_doaj_org_article_b3fb8b705f89486c936a20b6aa354621&rfr_iscdi=true