Determination of effective synaptic conductances using somatic voltage clamp
The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2019-03, Vol.15 (3), p.e1006871-e1006871 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006871 |
---|---|
container_issue | 3 |
container_start_page | e1006871 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Li, Songting Liu, Nan Yao, Li Zhang, Xiaohui Zhou, Douglas Cai, David |
description | The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of determining input conductance, which has been applied for decades, employs the synaptic current-voltage (I-V) relation obtained via voltage clamp. Due to the space clamp effect, the measured conductance is different from the local conductance on the dendrites. Therefore, the interpretation of the measured conductance remains to be clarified. Using theoretical analysis, electrophysiological experiments, and realistic neuron simulations, here we demonstrate that there does not exist a transform between the local conductance and the conductance measured by the traditional method, due to the neglect of a nonlinear interaction between the clamp current and the synaptic current in the traditional method. Consequently, the conductance determined by the traditional method may not correlate with the local conductance on the dendrites, and its value could be unphysically negative as observed in experiment. To circumvent the challenge of the space clamp effect and elucidate synaptic impact on neuronal information processing, we propose the concept of effective conductance which is proportional to the local conductance on the dendrite and reflects directly the functional influence of synaptic inputs on somatic membrane potential dynamics, and we further develop a framework to determine the effective conductance accurately. Our work suggests re-examination of previous studies involving conductance measurement and provides a reliable approach to assess synaptic influence on neuronal computation. |
doi_str_mv | 10.1371/journal.pcbi.1006871 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250643456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581096815</galeid><doaj_id>oai_doaj_org_article_b8fe9c6b7de14967aa8b8502284a0a7b</doaj_id><sourcerecordid>A581096815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-673f115a1ab0317ba2857078ea39116fe29387ecba6b91ab31316f5a70f160083</originalsourceid><addsrcrecordid>eNqVkkuP0zAQxyMEYpeFb4AgEhc4tNhx_MgFabW8KlUg8ThbE3ccXCV2iZ2K_fa4NLvaIi7IB1szv_nPw1MUTylZUibp622YRg_9cmdat6SECCXpveKccs4WknF1_877rHgU45aQ_GzEw-KMEcW4pM15sX6LCcfBeUgu-DLYEq1Fk9wey3jtYZecKU3wm8kk8AZjOUXnuzKGAQ6ufegTdFiaHobd4-KBhT7ik_m-KL6_f_ft6uNi_fnD6upyvTCCsbQQkllKOVBoCaOyhUpxSaRCYA2lwmLVMCXRtCDaJkOMsmzlIImlguTSL4rnR91dH6KeBxF1VXEialZzkYnVkdgE2Ord6AYYr3UAp_8YwthpGHP9PepWWWyMaOUGad0ICaBaxUlVqRoIyDZrvZmzTe2AG4M-jdCfiJ56vPuhu7DXoq4Iqess8HIWGMPPCWPSg4sG-x48hinXTZXKH1PRKqMv_kL_3d3ySHWQG3DehpzX5LPBweXPQuuy_ZIrShqhKM8Br04CMpPwV-pgilGvvn75D_bTKVsfWTOGGEe0t1OhRB-29KZ8fdhSPW9pDnt2d6K3QTdryX4DCF7jSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250643456</pqid></control><display><type>article</type><title>Determination of effective synaptic conductances using somatic voltage clamp</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Songting ; Liu, Nan ; Yao, Li ; Zhang, Xiaohui ; Zhou, Douglas ; Cai, David</creator><contributor>Hennig, Matthias Helge</contributor><creatorcontrib>Li, Songting ; Liu, Nan ; Yao, Li ; Zhang, Xiaohui ; Zhou, Douglas ; Cai, David ; Hennig, Matthias Helge</creatorcontrib><description>The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of determining input conductance, which has been applied for decades, employs the synaptic current-voltage (I-V) relation obtained via voltage clamp. Due to the space clamp effect, the measured conductance is different from the local conductance on the dendrites. Therefore, the interpretation of the measured conductance remains to be clarified. Using theoretical analysis, electrophysiological experiments, and realistic neuron simulations, here we demonstrate that there does not exist a transform between the local conductance and the conductance measured by the traditional method, due to the neglect of a nonlinear interaction between the clamp current and the synaptic current in the traditional method. Consequently, the conductance determined by the traditional method may not correlate with the local conductance on the dendrites, and its value could be unphysically negative as observed in experiment. To circumvent the challenge of the space clamp effect and elucidate synaptic impact on neuronal information processing, we propose the concept of effective conductance which is proportional to the local conductance on the dendrite and reflects directly the functional influence of synaptic inputs on somatic membrane potential dynamics, and we further develop a framework to determine the effective conductance accurately. Our work suggests re-examination of previous studies involving conductance measurement and provides a reliable approach to assess synaptic influence on neuronal computation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006871</identifier><identifier>PMID: 30835719</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Brain ; Brain research ; Computer Simulation ; Conductance ; Cytological research ; Data processing ; Dendrites ; Dendrites - physiology ; Electric potential ; Experiments ; Hippocampus - cytology ; Hippocampus - physiology ; Information processing ; Laboratories ; Medicine and Health Sciences ; Membrane potential ; Membrane Potentials ; Methods ; Models, Neurological ; Neural conduction ; Neurons ; Neurons - physiology ; Neurosciences ; Patch-Clamp Techniques ; Rats, Sprague-Dawley ; Research and Analysis Methods ; Resistance ; Synaptic Transmission ; Theoretical analysis ; Voltage</subject><ispartof>PLoS computational biology, 2019-03, Vol.15 (3), p.e1006871-e1006871</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Li et al 2019 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-673f115a1ab0317ba2857078ea39116fe29387ecba6b91ab31316f5a70f160083</citedby><cites>FETCH-LOGICAL-c633t-673f115a1ab0317ba2857078ea39116fe29387ecba6b91ab31316f5a70f160083</cites><orcidid>0000-0002-0977-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420044/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420044/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30835719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hennig, Matthias Helge</contributor><creatorcontrib>Li, Songting</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Yao, Li</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Zhou, Douglas</creatorcontrib><creatorcontrib>Cai, David</creatorcontrib><title>Determination of effective synaptic conductances using somatic voltage clamp</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of determining input conductance, which has been applied for decades, employs the synaptic current-voltage (I-V) relation obtained via voltage clamp. Due to the space clamp effect, the measured conductance is different from the local conductance on the dendrites. Therefore, the interpretation of the measured conductance remains to be clarified. Using theoretical analysis, electrophysiological experiments, and realistic neuron simulations, here we demonstrate that there does not exist a transform between the local conductance and the conductance measured by the traditional method, due to the neglect of a nonlinear interaction between the clamp current and the synaptic current in the traditional method. Consequently, the conductance determined by the traditional method may not correlate with the local conductance on the dendrites, and its value could be unphysically negative as observed in experiment. To circumvent the challenge of the space clamp effect and elucidate synaptic impact on neuronal information processing, we propose the concept of effective conductance which is proportional to the local conductance on the dendrite and reflects directly the functional influence of synaptic inputs on somatic membrane potential dynamics, and we further develop a framework to determine the effective conductance accurately. Our work suggests re-examination of previous studies involving conductance measurement and provides a reliable approach to assess synaptic influence on neuronal computation.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain research</subject><subject>Computer Simulation</subject><subject>Conductance</subject><subject>Cytological research</subject><subject>Data processing</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Electric potential</subject><subject>Experiments</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Information processing</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Methods</subject><subject>Models, Neurological</subject><subject>Neural conduction</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Patch-Clamp Techniques</subject><subject>Rats, Sprague-Dawley</subject><subject>Research and Analysis Methods</subject><subject>Resistance</subject><subject>Synaptic Transmission</subject><subject>Theoretical analysis</subject><subject>Voltage</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAQxyMEYpeFb4AgEhc4tNhx_MgFabW8KlUg8ThbE3ccXCV2iZ2K_fa4NLvaIi7IB1szv_nPw1MUTylZUibp622YRg_9cmdat6SECCXpveKccs4WknF1_877rHgU45aQ_GzEw-KMEcW4pM15sX6LCcfBeUgu-DLYEq1Fk9wey3jtYZecKU3wm8kk8AZjOUXnuzKGAQ6ufegTdFiaHobd4-KBhT7ik_m-KL6_f_ft6uNi_fnD6upyvTCCsbQQkllKOVBoCaOyhUpxSaRCYA2lwmLVMCXRtCDaJkOMsmzlIImlguTSL4rnR91dH6KeBxF1VXEialZzkYnVkdgE2Ord6AYYr3UAp_8YwthpGHP9PepWWWyMaOUGad0ICaBaxUlVqRoIyDZrvZmzTe2AG4M-jdCfiJ56vPuhu7DXoq4Iqess8HIWGMPPCWPSg4sG-x48hinXTZXKH1PRKqMv_kL_3d3ySHWQG3DehpzX5LPBweXPQuuy_ZIrShqhKM8Br04CMpPwV-pgilGvvn75D_bTKVsfWTOGGEe0t1OhRB-29KZ8fdhSPW9pDnt2d6K3QTdryX4DCF7jSA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Li, Songting</creator><creator>Liu, Nan</creator><creator>Yao, Li</creator><creator>Zhang, Xiaohui</creator><creator>Zhou, Douglas</creator><creator>Cai, David</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0977-6943</orcidid></search><sort><creationdate>20190301</creationdate><title>Determination of effective synaptic conductances using somatic voltage clamp</title><author>Li, Songting ; Liu, Nan ; Yao, Li ; Zhang, Xiaohui ; Zhou, Douglas ; Cai, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-673f115a1ab0317ba2857078ea39116fe29387ecba6b91ab31316f5a70f160083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain research</topic><topic>Computer Simulation</topic><topic>Conductance</topic><topic>Cytological research</topic><topic>Data processing</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Electric potential</topic><topic>Experiments</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Information processing</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Methods</topic><topic>Models, Neurological</topic><topic>Neural conduction</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Patch-Clamp Techniques</topic><topic>Rats, Sprague-Dawley</topic><topic>Research and Analysis Methods</topic><topic>Resistance</topic><topic>Synaptic Transmission</topic><topic>Theoretical analysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Songting</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Yao, Li</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Zhou, Douglas</creatorcontrib><creatorcontrib>Cai, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Songting</au><au>Liu, Nan</au><au>Yao, Li</au><au>Zhang, Xiaohui</au><au>Zhou, Douglas</au><au>Cai, David</au><au>Hennig, Matthias Helge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of effective synaptic conductances using somatic voltage clamp</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>15</volume><issue>3</issue><spage>e1006871</spage><epage>e1006871</epage><pages>e1006871-e1006871</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of determining input conductance, which has been applied for decades, employs the synaptic current-voltage (I-V) relation obtained via voltage clamp. Due to the space clamp effect, the measured conductance is different from the local conductance on the dendrites. Therefore, the interpretation of the measured conductance remains to be clarified. Using theoretical analysis, electrophysiological experiments, and realistic neuron simulations, here we demonstrate that there does not exist a transform between the local conductance and the conductance measured by the traditional method, due to the neglect of a nonlinear interaction between the clamp current and the synaptic current in the traditional method. Consequently, the conductance determined by the traditional method may not correlate with the local conductance on the dendrites, and its value could be unphysically negative as observed in experiment. To circumvent the challenge of the space clamp effect and elucidate synaptic impact on neuronal information processing, we propose the concept of effective conductance which is proportional to the local conductance on the dendrite and reflects directly the functional influence of synaptic inputs on somatic membrane potential dynamics, and we further develop a framework to determine the effective conductance accurately. Our work suggests re-examination of previous studies involving conductance measurement and provides a reliable approach to assess synaptic influence on neuronal computation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30835719</pmid><doi>10.1371/journal.pcbi.1006871</doi><orcidid>https://orcid.org/0000-0002-0977-6943</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-03, Vol.15 (3), p.e1006871-e1006871 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250643456 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biology and Life Sciences Brain Brain research Computer Simulation Conductance Cytological research Data processing Dendrites Dendrites - physiology Electric potential Experiments Hippocampus - cytology Hippocampus - physiology Information processing Laboratories Medicine and Health Sciences Membrane potential Membrane Potentials Methods Models, Neurological Neural conduction Neurons Neurons - physiology Neurosciences Patch-Clamp Techniques Rats, Sprague-Dawley Research and Analysis Methods Resistance Synaptic Transmission Theoretical analysis Voltage |
title | Determination of effective synaptic conductances using somatic voltage clamp |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20effective%20synaptic%20conductances%20using%20somatic%20voltage%20clamp&rft.jtitle=PLoS%20computational%20biology&rft.au=Li,%20Songting&rft.date=2019-03-01&rft.volume=15&rft.issue=3&rft.spage=e1006871&rft.epage=e1006871&rft.pages=e1006871-e1006871&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006871&rft_dat=%3Cgale_plos_%3EA581096815%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250643456&rft_id=info:pmid/30835719&rft_galeid=A581096815&rft_doaj_id=oai_doaj_org_article_b8fe9c6b7de14967aa8b8502284a0a7b&rfr_iscdi=true |