Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data

There exists significant interest in developing statistical and computational tools for inferring 'who infected whom' in an infectious disease outbreak from densely sampled case data, with most recent studies focusing on the analysis of whole genome sequence data. However, genomic data can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-03, Vol.15 (3), p.e1006930-e1006930
Hauptverfasser: Campbell, Finlay, Cori, Anne, Ferguson, Neil, Jombart, Thibaut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006930
container_issue 3
container_start_page e1006930
container_title PLoS computational biology
container_volume 15
creator Campbell, Finlay
Cori, Anne
Ferguson, Neil
Jombart, Thibaut
description There exists significant interest in developing statistical and computational tools for inferring 'who infected whom' in an infectious disease outbreak from densely sampled case data, with most recent studies focusing on the analysis of whole genome sequence data. However, genomic data can be poorly informative of transmission events if mutations accumulate too slowly to resolve individual transmission pairs or if there exist multiple pathogens lineages within-host, and there has been little focus on incorporating other types of outbreak data. We present here a methodology that uses contact data for the inference of transmission trees in a statistically rigorous manner, alongside genomic data and temporal data. Contact data is frequently collected in outbreaks of pathogens spread by close contact, including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV) and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic model that relates a set of contact data to an underlying transmission tree and integrated this in the outbreaker2 inference framework. By analyzing simulated outbreaks under various contact tracing scenarios, we demonstrate that contact data significantly improves our ability to reconstruct transmission trees, even under realistic limitations on the coverage of the contact tracing effort and the amount of non-infectious mixing between cases. Indeed, contact data is equally or more informative than fully sampled whole genome sequence data in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS outbreak in Singapore and describe the range of transmission scenarios consistent with contact data and genetic sequence in a probabilistic manner for the first time. This simple yet flexible model can easily be incorporated into existing tools for outbreak reconstruction and should permit a better integration of genomic and epidemiological data for inferring transmission chains.
doi_str_mv 10.1371/journal.pcbi.1006930
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250643386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_79b2797f7d8a400dbd13bc4c6e62064e</doaj_id><sourcerecordid>2250643386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b67eee0afd9fc3edd971e44c9965bf3f039a82ee4aba58ffa4ba65b44e87498b3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJSw_s4sRf8QUJKj4qVeICZ2vsjHe9SuwlTpD23-PtplWLOFgz8rx5nnl-VfW6puuaqfrDLs1jhH69dzasa0qlZvRJdV4LwVaKifbpg_ysepHzjtKSavm8OmNUN6KW7XmFn-GAOUAkIXocMTokyZNphJiHkHNIkbgthJjJnEPckCkMx1Aw-TDspzTk92QP0zZtMJJy0oCZQOyIS3ECN5EOJnhZPfPQZ3y1xIvq19cvP6--r25-fLu--nSzcqKR08pKhYgUfKe9Y9h1WtXIudNaCuuZp0xD2yBysCBa74FbKBXOsVVct5ZdVG9PvPs-ZbMolE3TCCo5Y60siOsTokuwM_sxDDAeTIJgbi_SuDEwTsH1aJS2jdLKq64FTmlnu5pZx51E2RQ6LFwfl9dmO2DnMBbZ-kekjysxbM0m_TGSCyWELgSXC8GYfs-YJ1Mkd9j3EDHNx7kpVS0t312g7_6B_n87fkK5MeU8or8fpqbm6Jq7LnN0jVlcU9rePFzkvunOJuwvYLvC_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250643386</pqid></control><display><type>article</type><title>Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Campbell, Finlay ; Cori, Anne ; Ferguson, Neil ; Jombart, Thibaut</creator><creatorcontrib>Campbell, Finlay ; Cori, Anne ; Ferguson, Neil ; Jombart, Thibaut</creatorcontrib><description>There exists significant interest in developing statistical and computational tools for inferring 'who infected whom' in an infectious disease outbreak from densely sampled case data, with most recent studies focusing on the analysis of whole genome sequence data. However, genomic data can be poorly informative of transmission events if mutations accumulate too slowly to resolve individual transmission pairs or if there exist multiple pathogens lineages within-host, and there has been little focus on incorporating other types of outbreak data. We present here a methodology that uses contact data for the inference of transmission trees in a statistically rigorous manner, alongside genomic data and temporal data. Contact data is frequently collected in outbreaks of pathogens spread by close contact, including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV) and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic model that relates a set of contact data to an underlying transmission tree and integrated this in the outbreaker2 inference framework. By analyzing simulated outbreaks under various contact tracing scenarios, we demonstrate that contact data significantly improves our ability to reconstruct transmission trees, even under realistic limitations on the coverage of the contact tracing effort and the amount of non-infectious mixing between cases. Indeed, contact data is equally or more informative than fully sampled whole genome sequence data in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS outbreak in Singapore and describe the range of transmission scenarios consistent with contact data and genetic sequence in a probabilistic manner for the first time. This simple yet flexible model can easily be incorporated into existing tools for outbreak reconstruction and should permit a better integration of genomic and epidemiological data for inferring transmission chains.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006930</identifier><identifier>PMID: 30925168</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bayes Theorem ; Bayesian analysis ; Biology and life sciences ; Chains ; Communicable Diseases - transmission ; Communicable Diseases - virology ; Computational Biology - methods ; Computer applications ; Computer simulation ; Contact Tracing ; Coronaviridae ; Coronaviruses ; Coverage ; Disease Outbreaks - statistics &amp; numerical data ; Disease transmission ; Ebola virus ; Epidemics ; Epidemiology ; Genetic diversity ; Genome, Viral - genetics ; Genomes ; Genomics ; Humans ; Infectious diseases ; Medicine and Health Sciences ; Models, Biological ; Mutation ; Nucleotide sequence ; Outbreaks ; Pathogens ; Phylogenetics ; Physical Sciences ; Probabilistic models ; Public health ; Respiratory diseases ; Severe acute respiratory syndrome ; Severe Acute Respiratory Syndrome - transmission ; Severe Acute Respiratory Syndrome - virology ; Severe acute respiratory syndrome-related coronavirus - genetics ; Signs and symptoms ; Singapore ; Software ; Statistical analysis ; Statistical inference ; Streptococcus infections ; Supervision ; Trees ; Tuberculosis ; Viral diseases ; Viruses</subject><ispartof>PLoS computational biology, 2019-03, Vol.15 (3), p.e1006930-e1006930</ispartof><rights>2019 Campbell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Campbell et al 2019 Campbell et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b67eee0afd9fc3edd971e44c9965bf3f039a82ee4aba58ffa4ba65b44e87498b3</citedby><cites>FETCH-LOGICAL-c526t-b67eee0afd9fc3edd971e44c9965bf3f039a82ee4aba58ffa4ba65b44e87498b3</cites><orcidid>0000-0002-1154-8093 ; 0000-0002-1849-1886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457559/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457559/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30925168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, Finlay</creatorcontrib><creatorcontrib>Cori, Anne</creatorcontrib><creatorcontrib>Ferguson, Neil</creatorcontrib><creatorcontrib>Jombart, Thibaut</creatorcontrib><title>Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>There exists significant interest in developing statistical and computational tools for inferring 'who infected whom' in an infectious disease outbreak from densely sampled case data, with most recent studies focusing on the analysis of whole genome sequence data. However, genomic data can be poorly informative of transmission events if mutations accumulate too slowly to resolve individual transmission pairs or if there exist multiple pathogens lineages within-host, and there has been little focus on incorporating other types of outbreak data. We present here a methodology that uses contact data for the inference of transmission trees in a statistically rigorous manner, alongside genomic data and temporal data. Contact data is frequently collected in outbreaks of pathogens spread by close contact, including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV) and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic model that relates a set of contact data to an underlying transmission tree and integrated this in the outbreaker2 inference framework. By analyzing simulated outbreaks under various contact tracing scenarios, we demonstrate that contact data significantly improves our ability to reconstruct transmission trees, even under realistic limitations on the coverage of the contact tracing effort and the amount of non-infectious mixing between cases. Indeed, contact data is equally or more informative than fully sampled whole genome sequence data in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS outbreak in Singapore and describe the range of transmission scenarios consistent with contact data and genetic sequence in a probabilistic manner for the first time. This simple yet flexible model can easily be incorporated into existing tools for outbreak reconstruction and should permit a better integration of genomic and epidemiological data for inferring transmission chains.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and life sciences</subject><subject>Chains</subject><subject>Communicable Diseases - transmission</subject><subject>Communicable Diseases - virology</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Contact Tracing</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>Coverage</subject><subject>Disease Outbreaks - statistics &amp; numerical data</subject><subject>Disease transmission</subject><subject>Ebola virus</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Genetic diversity</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Outbreaks</subject><subject>Pathogens</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Probabilistic models</subject><subject>Public health</subject><subject>Respiratory diseases</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe Acute Respiratory Syndrome - transmission</subject><subject>Severe Acute Respiratory Syndrome - virology</subject><subject>Severe acute respiratory syndrome-related coronavirus - genetics</subject><subject>Signs and symptoms</subject><subject>Singapore</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Streptococcus infections</subject><subject>Supervision</subject><subject>Trees</subject><subject>Tuberculosis</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJSw_s4sRf8QUJKj4qVeICZ2vsjHe9SuwlTpD23-PtplWLOFgz8rx5nnl-VfW6puuaqfrDLs1jhH69dzasa0qlZvRJdV4LwVaKifbpg_ysepHzjtKSavm8OmNUN6KW7XmFn-GAOUAkIXocMTokyZNphJiHkHNIkbgthJjJnEPckCkMx1Aw-TDspzTk92QP0zZtMJJy0oCZQOyIS3ECN5EOJnhZPfPQZ3y1xIvq19cvP6--r25-fLu--nSzcqKR08pKhYgUfKe9Y9h1WtXIudNaCuuZp0xD2yBysCBa74FbKBXOsVVct5ZdVG9PvPs-ZbMolE3TCCo5Y60siOsTokuwM_sxDDAeTIJgbi_SuDEwTsH1aJS2jdLKq64FTmlnu5pZx51E2RQ6LFwfl9dmO2DnMBbZ-kekjysxbM0m_TGSCyWELgSXC8GYfs-YJ1Mkd9j3EDHNx7kpVS0t312g7_6B_n87fkK5MeU8or8fpqbm6Jq7LnN0jVlcU9rePFzkvunOJuwvYLvC_Q</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Campbell, Finlay</creator><creator>Cori, Anne</creator><creator>Ferguson, Neil</creator><creator>Jombart, Thibaut</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1154-8093</orcidid><orcidid>https://orcid.org/0000-0002-1849-1886</orcidid></search><sort><creationdate>20190301</creationdate><title>Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data</title><author>Campbell, Finlay ; Cori, Anne ; Ferguson, Neil ; Jombart, Thibaut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b67eee0afd9fc3edd971e44c9965bf3f039a82ee4aba58ffa4ba65b44e87498b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and life sciences</topic><topic>Chains</topic><topic>Communicable Diseases - transmission</topic><topic>Communicable Diseases - virology</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Contact Tracing</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>Coverage</topic><topic>Disease Outbreaks - statistics &amp; numerical data</topic><topic>Disease transmission</topic><topic>Ebola virus</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Genetic diversity</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Outbreaks</topic><topic>Pathogens</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Probabilistic models</topic><topic>Public health</topic><topic>Respiratory diseases</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe Acute Respiratory Syndrome - transmission</topic><topic>Severe Acute Respiratory Syndrome - virology</topic><topic>Severe acute respiratory syndrome-related coronavirus - genetics</topic><topic>Signs and symptoms</topic><topic>Singapore</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Streptococcus infections</topic><topic>Supervision</topic><topic>Trees</topic><topic>Tuberculosis</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Finlay</creatorcontrib><creatorcontrib>Cori, Anne</creatorcontrib><creatorcontrib>Ferguson, Neil</creatorcontrib><creatorcontrib>Jombart, Thibaut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Finlay</au><au>Cori, Anne</au><au>Ferguson, Neil</au><au>Jombart, Thibaut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>15</volume><issue>3</issue><spage>e1006930</spage><epage>e1006930</epage><pages>e1006930-e1006930</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>There exists significant interest in developing statistical and computational tools for inferring 'who infected whom' in an infectious disease outbreak from densely sampled case data, with most recent studies focusing on the analysis of whole genome sequence data. However, genomic data can be poorly informative of transmission events if mutations accumulate too slowly to resolve individual transmission pairs or if there exist multiple pathogens lineages within-host, and there has been little focus on incorporating other types of outbreak data. We present here a methodology that uses contact data for the inference of transmission trees in a statistically rigorous manner, alongside genomic data and temporal data. Contact data is frequently collected in outbreaks of pathogens spread by close contact, including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV) and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic model that relates a set of contact data to an underlying transmission tree and integrated this in the outbreaker2 inference framework. By analyzing simulated outbreaks under various contact tracing scenarios, we demonstrate that contact data significantly improves our ability to reconstruct transmission trees, even under realistic limitations on the coverage of the contact tracing effort and the amount of non-infectious mixing between cases. Indeed, contact data is equally or more informative than fully sampled whole genome sequence data in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS outbreak in Singapore and describe the range of transmission scenarios consistent with contact data and genetic sequence in a probabilistic manner for the first time. This simple yet flexible model can easily be incorporated into existing tools for outbreak reconstruction and should permit a better integration of genomic and epidemiological data for inferring transmission chains.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30925168</pmid><doi>10.1371/journal.pcbi.1006930</doi><orcidid>https://orcid.org/0000-0002-1154-8093</orcidid><orcidid>https://orcid.org/0000-0002-1849-1886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-03, Vol.15 (3), p.e1006930-e1006930
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250643386
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Bayes Theorem
Bayesian analysis
Biology and life sciences
Chains
Communicable Diseases - transmission
Communicable Diseases - virology
Computational Biology - methods
Computer applications
Computer simulation
Contact Tracing
Coronaviridae
Coronaviruses
Coverage
Disease Outbreaks - statistics & numerical data
Disease transmission
Ebola virus
Epidemics
Epidemiology
Genetic diversity
Genome, Viral - genetics
Genomes
Genomics
Humans
Infectious diseases
Medicine and Health Sciences
Models, Biological
Mutation
Nucleotide sequence
Outbreaks
Pathogens
Phylogenetics
Physical Sciences
Probabilistic models
Public health
Respiratory diseases
Severe acute respiratory syndrome
Severe Acute Respiratory Syndrome - transmission
Severe Acute Respiratory Syndrome - virology
Severe acute respiratory syndrome-related coronavirus - genetics
Signs and symptoms
Singapore
Software
Statistical analysis
Statistical inference
Streptococcus infections
Supervision
Trees
Tuberculosis
Viral diseases
Viruses
title Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20of%20transmission%20chains%20using%20timing%20of%20symptoms,%20pathogen%20genomes%20and%20contact%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Campbell,%20Finlay&rft.date=2019-03-01&rft.volume=15&rft.issue=3&rft.spage=e1006930&rft.epage=e1006930&rft.pages=e1006930-e1006930&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006930&rft_dat=%3Cproquest_plos_%3E2250643386%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250643386&rft_id=info:pmid/30925168&rft_doaj_id=oai_doaj_org_article_79b2797f7d8a400dbd13bc4c6e62064e&rfr_iscdi=true