BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-04, Vol.15 (4), p.e1006971-e1006971
Hauptverfasser: Lachance, Jean-Christophe, Lloyd, Colton J, Monk, Jonathan M, Yang, Laurence, Sastry, Anand V, Seif, Yara, Palsson, Bernhard O, Rodrigue, Sébastien, Feist, Adam M, King, Zachary A, Jacques, Pierre-Étienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006971
container_issue 4
container_start_page e1006971
container_title PLoS computational biology
container_volume 15
creator Lachance, Jean-Christophe
Lloyd, Colton J
Monk, Jonathan M
Yang, Laurence
Sastry, Anand V
Seif, Yara
Palsson, Bernhard O
Rodrigue, Sébastien
Feist, Adam M
King, Zachary A
Jacques, Pierre-Étienne
description Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).
doi_str_mv 10.1371/journal.pcbi.1006971
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250643344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584292508</galeid><doaj_id>oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2</doaj_id><sourcerecordid>A584292508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXezYsWMOSKWiZaWKSnycLX-Mg1dOvNhJVf49XnZbdREX5INH9vO-Mx5PVT3HaIkJx2_XcU6jCsuN0X6JEWKC4wfVMW5bsuCk7R7ei4-qJzmvESqhYI-rI1J4QVt8XPUfrs6tmt7VFzBCUpMf-1r7OKic66jXYCZ_DbWbxxLEMdcuprqHMQ6wyEYFqAeYlI7Bm3qIFkIhUhxquNlA8gOMkwp18VdPq0dOhQzP9vtJ9f3847ezT4vLq4vV2enlwjBCpgXHtO0UtZZ0CDpjqRVKdFyAAEUc5VZwAGZQo4G1xKqWcU0wazTjxjmByUn1cue7CTHLfY-ybJoWMUoIpYVY7Qgb1VpuSpUq_ZJRefnnIKZeqjR5E0BiRTjSjQPecaq1LUk1cwZb5DqndVO83u-zzXoAa8p7kwoHpoc3o_8h-3gtGRWcIF4MXu8NUvw5Q57k4LOBENQIcd7WjQmmgnWsoK_-Qv_9uuWO6svnSD-6WPKasiwM3sQRnC_np21HG1FUXRG8ORAUZoKbqVdzznL19ct_sJ8PWbpjTYo5J3B3XcFIbgf4tny5HWC5H-Aie3G_o3ei24klvwEhQe6T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250643344</pqid></control><display><type>article</type><title>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Lachance, Jean-Christophe ; Lloyd, Colton J ; Monk, Jonathan M ; Yang, Laurence ; Sastry, Anand V ; Seif, Yara ; Palsson, Bernhard O ; Rodrigue, Sébastien ; Feist, Adam M ; King, Zachary A ; Jacques, Pierre-Étienne</creator><contributor>Schneidman-Duhovny, Dina</contributor><creatorcontrib>Lachance, Jean-Christophe ; Lloyd, Colton J ; Monk, Jonathan M ; Yang, Laurence ; Sastry, Anand V ; Seif, Yara ; Palsson, Bernhard O ; Rodrigue, Sébastien ; Feist, Adam M ; King, Zachary A ; Jacques, Pierre-Étienne ; Schneidman-Duhovny, Dina</creatorcontrib><description>Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006971</identifier><identifier>PMID: 31009451</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bioengineering ; Bioinformatics ; Biology and Life Sciences ; Biomass ; Coenzymes ; Composition ; Computational biology ; Computer and Information Sciences ; Computer applications ; Deoxyribonucleic acid ; DNA ; E coli ; Ecosystems ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Experimental data ; Funding ; Gems ; Genetic algorithms ; Genetic aspects ; Genome, Bacterial ; Genomes ; Genomics - methods ; Growth rate ; Hydroxides ; Ions ; Knowledge bases (artificial intelligence) ; Lipids ; Macromolecules ; Mathematical models ; Metabolic Networks and Pathways ; Metabolism ; Metabolites ; Methods ; Models, Biological ; Objective function ; Objectives ; Phenotypes ; Phylogenetics ; Physical Sciences ; Python (Programming language) ; Ribonucleic acid ; RNA ; Scale models ; Software ; Source code ; Species ; Supervision ; Teaching methods</subject><ispartof>PLoS computational biology, 2019-04, Vol.15 (4), p.e1006971-e1006971</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Lachance et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Lachance et al 2019 Lachance et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</citedby><cites>FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</cites><orcidid>0000-0002-3096-6995 ; 0000-0002-8293-3909 ; 0000-0001-6663-7643 ; 0000-0002-8630-4800 ; 0000-0003-1238-1499 ; 0000-0002-3961-294X ; 0000-0003-2357-6785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497307/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497307/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31009451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schneidman-Duhovny, Dina</contributor><creatorcontrib>Lachance, Jean-Christophe</creatorcontrib><creatorcontrib>Lloyd, Colton J</creatorcontrib><creatorcontrib>Monk, Jonathan M</creatorcontrib><creatorcontrib>Yang, Laurence</creatorcontrib><creatorcontrib>Sastry, Anand V</creatorcontrib><creatorcontrib>Seif, Yara</creatorcontrib><creatorcontrib>Palsson, Bernhard O</creatorcontrib><creatorcontrib>Rodrigue, Sébastien</creatorcontrib><creatorcontrib>Feist, Adam M</creatorcontrib><creatorcontrib>King, Zachary A</creatorcontrib><creatorcontrib>Jacques, Pierre-Étienne</creatorcontrib><title>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).</description><subject>Analysis</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Coenzymes</subject><subject>Composition</subject><subject>Computational biology</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>E coli</subject><subject>Ecosystems</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Experimental data</subject><subject>Funding</subject><subject>Gems</subject><subject>Genetic algorithms</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Growth rate</subject><subject>Hydroxides</subject><subject>Ions</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Lipids</subject><subject>Macromolecules</subject><subject>Mathematical models</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Objective function</subject><subject>Objectives</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Python (Programming language)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Scale models</subject><subject>Software</subject><subject>Source code</subject><subject>Species</subject><subject>Supervision</subject><subject>Teaching methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXezYsWMOSKWiZaWKSnycLX-Mg1dOvNhJVf49XnZbdREX5INH9vO-Mx5PVT3HaIkJx2_XcU6jCsuN0X6JEWKC4wfVMW5bsuCk7R7ei4-qJzmvESqhYI-rI1J4QVt8XPUfrs6tmt7VFzBCUpMf-1r7OKic66jXYCZ_DbWbxxLEMdcuprqHMQ6wyEYFqAeYlI7Bm3qIFkIhUhxquNlA8gOMkwp18VdPq0dOhQzP9vtJ9f3847ezT4vLq4vV2enlwjBCpgXHtO0UtZZ0CDpjqRVKdFyAAEUc5VZwAGZQo4G1xKqWcU0wazTjxjmByUn1cue7CTHLfY-ybJoWMUoIpYVY7Qgb1VpuSpUq_ZJRefnnIKZeqjR5E0BiRTjSjQPecaq1LUk1cwZb5DqndVO83u-zzXoAa8p7kwoHpoc3o_8h-3gtGRWcIF4MXu8NUvw5Q57k4LOBENQIcd7WjQmmgnWsoK_-Qv_9uuWO6svnSD-6WPKasiwM3sQRnC_np21HG1FUXRG8ORAUZoKbqVdzznL19ct_sJ8PWbpjTYo5J3B3XcFIbgf4tny5HWC5H-Aie3G_o3ei24klvwEhQe6T</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lachance, Jean-Christophe</creator><creator>Lloyd, Colton J</creator><creator>Monk, Jonathan M</creator><creator>Yang, Laurence</creator><creator>Sastry, Anand V</creator><creator>Seif, Yara</creator><creator>Palsson, Bernhard O</creator><creator>Rodrigue, Sébastien</creator><creator>Feist, Adam M</creator><creator>King, Zachary A</creator><creator>Jacques, Pierre-Étienne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3096-6995</orcidid><orcidid>https://orcid.org/0000-0002-8293-3909</orcidid><orcidid>https://orcid.org/0000-0001-6663-7643</orcidid><orcidid>https://orcid.org/0000-0002-8630-4800</orcidid><orcidid>https://orcid.org/0000-0003-1238-1499</orcidid><orcidid>https://orcid.org/0000-0002-3961-294X</orcidid><orcidid>https://orcid.org/0000-0003-2357-6785</orcidid></search><sort><creationdate>20190401</creationdate><title>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</title><author>Lachance, Jean-Christophe ; Lloyd, Colton J ; Monk, Jonathan M ; Yang, Laurence ; Sastry, Anand V ; Seif, Yara ; Palsson, Bernhard O ; Rodrigue, Sébastien ; Feist, Adam M ; King, Zachary A ; Jacques, Pierre-Étienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Coenzymes</topic><topic>Composition</topic><topic>Computational biology</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>E coli</topic><topic>Ecosystems</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Experimental data</topic><topic>Funding</topic><topic>Gems</topic><topic>Genetic algorithms</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Growth rate</topic><topic>Hydroxides</topic><topic>Ions</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Lipids</topic><topic>Macromolecules</topic><topic>Mathematical models</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Objective function</topic><topic>Objectives</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Python (Programming language)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Scale models</topic><topic>Software</topic><topic>Source code</topic><topic>Species</topic><topic>Supervision</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lachance, Jean-Christophe</creatorcontrib><creatorcontrib>Lloyd, Colton J</creatorcontrib><creatorcontrib>Monk, Jonathan M</creatorcontrib><creatorcontrib>Yang, Laurence</creatorcontrib><creatorcontrib>Sastry, Anand V</creatorcontrib><creatorcontrib>Seif, Yara</creatorcontrib><creatorcontrib>Palsson, Bernhard O</creatorcontrib><creatorcontrib>Rodrigue, Sébastien</creatorcontrib><creatorcontrib>Feist, Adam M</creatorcontrib><creatorcontrib>King, Zachary A</creatorcontrib><creatorcontrib>Jacques, Pierre-Étienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lachance, Jean-Christophe</au><au>Lloyd, Colton J</au><au>Monk, Jonathan M</au><au>Yang, Laurence</au><au>Sastry, Anand V</au><au>Seif, Yara</au><au>Palsson, Bernhard O</au><au>Rodrigue, Sébastien</au><au>Feist, Adam M</au><au>King, Zachary A</au><au>Jacques, Pierre-Étienne</au><au>Schneidman-Duhovny, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>e1006971</spage><epage>e1006971</epage><pages>e1006971-e1006971</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31009451</pmid><doi>10.1371/journal.pcbi.1006971</doi><orcidid>https://orcid.org/0000-0002-3096-6995</orcidid><orcidid>https://orcid.org/0000-0002-8293-3909</orcidid><orcidid>https://orcid.org/0000-0001-6663-7643</orcidid><orcidid>https://orcid.org/0000-0002-8630-4800</orcidid><orcidid>https://orcid.org/0000-0003-1238-1499</orcidid><orcidid>https://orcid.org/0000-0002-3961-294X</orcidid><orcidid>https://orcid.org/0000-0003-2357-6785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-04, Vol.15 (4), p.e1006971-e1006971
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250643344
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Analysis
Bioengineering
Bioinformatics
Biology and Life Sciences
Biomass
Coenzymes
Composition
Computational biology
Computer and Information Sciences
Computer applications
Deoxyribonucleic acid
DNA
E coli
Ecosystems
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Experimental data
Funding
Gems
Genetic algorithms
Genetic aspects
Genome, Bacterial
Genomes
Genomics - methods
Growth rate
Hydroxides
Ions
Knowledge bases (artificial intelligence)
Lipids
Macromolecules
Mathematical models
Metabolic Networks and Pathways
Metabolism
Metabolites
Methods
Models, Biological
Objective function
Objectives
Phenotypes
Phylogenetics
Physical Sciences
Python (Programming language)
Ribonucleic acid
RNA
Scale models
Software
Source code
Species
Supervision
Teaching methods
title BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOFdat:%20Generating%20biomass%20objective%20functions%20for%20genome-scale%20metabolic%20models%20from%20experimental%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Lachance,%20Jean-Christophe&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=e1006971&rft.epage=e1006971&rft.pages=e1006971-e1006971&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006971&rft_dat=%3Cgale_plos_%3EA584292508%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250643344&rft_id=info:pmid/31009451&rft_galeid=A584292508&rft_doaj_id=oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2&rfr_iscdi=true