BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2019-04, Vol.15 (4), p.e1006971-e1006971 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006971 |
---|---|
container_issue | 4 |
container_start_page | e1006971 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Lachance, Jean-Christophe Lloyd, Colton J Monk, Jonathan M Yang, Laurence Sastry, Anand V Seif, Yara Palsson, Bernhard O Rodrigue, Sébastien Feist, Adam M King, Zachary A Jacques, Pierre-Étienne |
description | Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). |
doi_str_mv | 10.1371/journal.pcbi.1006971 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250643344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584292508</galeid><doaj_id>oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2</doaj_id><sourcerecordid>A584292508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXezYsWMOSKWiZaWKSnycLX-Mg1dOvNhJVf49XnZbdREX5INH9vO-Mx5PVT3HaIkJx2_XcU6jCsuN0X6JEWKC4wfVMW5bsuCk7R7ei4-qJzmvESqhYI-rI1J4QVt8XPUfrs6tmt7VFzBCUpMf-1r7OKic66jXYCZ_DbWbxxLEMdcuprqHMQ6wyEYFqAeYlI7Bm3qIFkIhUhxquNlA8gOMkwp18VdPq0dOhQzP9vtJ9f3847ezT4vLq4vV2enlwjBCpgXHtO0UtZZ0CDpjqRVKdFyAAEUc5VZwAGZQo4G1xKqWcU0wazTjxjmByUn1cue7CTHLfY-ybJoWMUoIpYVY7Qgb1VpuSpUq_ZJRefnnIKZeqjR5E0BiRTjSjQPecaq1LUk1cwZb5DqndVO83u-zzXoAa8p7kwoHpoc3o_8h-3gtGRWcIF4MXu8NUvw5Q57k4LOBENQIcd7WjQmmgnWsoK_-Qv_9uuWO6svnSD-6WPKasiwM3sQRnC_np21HG1FUXRG8ORAUZoKbqVdzznL19ct_sJ8PWbpjTYo5J3B3XcFIbgf4tny5HWC5H-Aie3G_o3ei24klvwEhQe6T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250643344</pqid></control><display><type>article</type><title>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Lachance, Jean-Christophe ; Lloyd, Colton J ; Monk, Jonathan M ; Yang, Laurence ; Sastry, Anand V ; Seif, Yara ; Palsson, Bernhard O ; Rodrigue, Sébastien ; Feist, Adam M ; King, Zachary A ; Jacques, Pierre-Étienne</creator><contributor>Schneidman-Duhovny, Dina</contributor><creatorcontrib>Lachance, Jean-Christophe ; Lloyd, Colton J ; Monk, Jonathan M ; Yang, Laurence ; Sastry, Anand V ; Seif, Yara ; Palsson, Bernhard O ; Rodrigue, Sébastien ; Feist, Adam M ; King, Zachary A ; Jacques, Pierre-Étienne ; Schneidman-Duhovny, Dina</creatorcontrib><description>Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006971</identifier><identifier>PMID: 31009451</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bioengineering ; Bioinformatics ; Biology and Life Sciences ; Biomass ; Coenzymes ; Composition ; Computational biology ; Computer and Information Sciences ; Computer applications ; Deoxyribonucleic acid ; DNA ; E coli ; Ecosystems ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Experimental data ; Funding ; Gems ; Genetic algorithms ; Genetic aspects ; Genome, Bacterial ; Genomes ; Genomics - methods ; Growth rate ; Hydroxides ; Ions ; Knowledge bases (artificial intelligence) ; Lipids ; Macromolecules ; Mathematical models ; Metabolic Networks and Pathways ; Metabolism ; Metabolites ; Methods ; Models, Biological ; Objective function ; Objectives ; Phenotypes ; Phylogenetics ; Physical Sciences ; Python (Programming language) ; Ribonucleic acid ; RNA ; Scale models ; Software ; Source code ; Species ; Supervision ; Teaching methods</subject><ispartof>PLoS computational biology, 2019-04, Vol.15 (4), p.e1006971-e1006971</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Lachance et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Lachance et al 2019 Lachance et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</citedby><cites>FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</cites><orcidid>0000-0002-3096-6995 ; 0000-0002-8293-3909 ; 0000-0001-6663-7643 ; 0000-0002-8630-4800 ; 0000-0003-1238-1499 ; 0000-0002-3961-294X ; 0000-0003-2357-6785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497307/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497307/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31009451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schneidman-Duhovny, Dina</contributor><creatorcontrib>Lachance, Jean-Christophe</creatorcontrib><creatorcontrib>Lloyd, Colton J</creatorcontrib><creatorcontrib>Monk, Jonathan M</creatorcontrib><creatorcontrib>Yang, Laurence</creatorcontrib><creatorcontrib>Sastry, Anand V</creatorcontrib><creatorcontrib>Seif, Yara</creatorcontrib><creatorcontrib>Palsson, Bernhard O</creatorcontrib><creatorcontrib>Rodrigue, Sébastien</creatorcontrib><creatorcontrib>Feist, Adam M</creatorcontrib><creatorcontrib>King, Zachary A</creatorcontrib><creatorcontrib>Jacques, Pierre-Étienne</creatorcontrib><title>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).</description><subject>Analysis</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Coenzymes</subject><subject>Composition</subject><subject>Computational biology</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>E coli</subject><subject>Ecosystems</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Experimental data</subject><subject>Funding</subject><subject>Gems</subject><subject>Genetic algorithms</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Growth rate</subject><subject>Hydroxides</subject><subject>Ions</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Lipids</subject><subject>Macromolecules</subject><subject>Mathematical models</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Objective function</subject><subject>Objectives</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Python (Programming language)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Scale models</subject><subject>Software</subject><subject>Source code</subject><subject>Species</subject><subject>Supervision</subject><subject>Teaching methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXezYsWMOSKWiZaWKSnycLX-Mg1dOvNhJVf49XnZbdREX5INH9vO-Mx5PVT3HaIkJx2_XcU6jCsuN0X6JEWKC4wfVMW5bsuCk7R7ei4-qJzmvESqhYI-rI1J4QVt8XPUfrs6tmt7VFzBCUpMf-1r7OKic66jXYCZ_DbWbxxLEMdcuprqHMQ6wyEYFqAeYlI7Bm3qIFkIhUhxquNlA8gOMkwp18VdPq0dOhQzP9vtJ9f3847ezT4vLq4vV2enlwjBCpgXHtO0UtZZ0CDpjqRVKdFyAAEUc5VZwAGZQo4G1xKqWcU0wazTjxjmByUn1cue7CTHLfY-ybJoWMUoIpYVY7Qgb1VpuSpUq_ZJRefnnIKZeqjR5E0BiRTjSjQPecaq1LUk1cwZb5DqndVO83u-zzXoAa8p7kwoHpoc3o_8h-3gtGRWcIF4MXu8NUvw5Q57k4LOBENQIcd7WjQmmgnWsoK_-Qv_9uuWO6svnSD-6WPKasiwM3sQRnC_np21HG1FUXRG8ORAUZoKbqVdzznL19ct_sJ8PWbpjTYo5J3B3XcFIbgf4tny5HWC5H-Aie3G_o3ei24klvwEhQe6T</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lachance, Jean-Christophe</creator><creator>Lloyd, Colton J</creator><creator>Monk, Jonathan M</creator><creator>Yang, Laurence</creator><creator>Sastry, Anand V</creator><creator>Seif, Yara</creator><creator>Palsson, Bernhard O</creator><creator>Rodrigue, Sébastien</creator><creator>Feist, Adam M</creator><creator>King, Zachary A</creator><creator>Jacques, Pierre-Étienne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3096-6995</orcidid><orcidid>https://orcid.org/0000-0002-8293-3909</orcidid><orcidid>https://orcid.org/0000-0001-6663-7643</orcidid><orcidid>https://orcid.org/0000-0002-8630-4800</orcidid><orcidid>https://orcid.org/0000-0003-1238-1499</orcidid><orcidid>https://orcid.org/0000-0002-3961-294X</orcidid><orcidid>https://orcid.org/0000-0003-2357-6785</orcidid></search><sort><creationdate>20190401</creationdate><title>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</title><author>Lachance, Jean-Christophe ; Lloyd, Colton J ; Monk, Jonathan M ; Yang, Laurence ; Sastry, Anand V ; Seif, Yara ; Palsson, Bernhard O ; Rodrigue, Sébastien ; Feist, Adam M ; King, Zachary A ; Jacques, Pierre-Étienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Coenzymes</topic><topic>Composition</topic><topic>Computational biology</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>E coli</topic><topic>Ecosystems</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Experimental data</topic><topic>Funding</topic><topic>Gems</topic><topic>Genetic algorithms</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Growth rate</topic><topic>Hydroxides</topic><topic>Ions</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Lipids</topic><topic>Macromolecules</topic><topic>Mathematical models</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Objective function</topic><topic>Objectives</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Python (Programming language)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Scale models</topic><topic>Software</topic><topic>Source code</topic><topic>Species</topic><topic>Supervision</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lachance, Jean-Christophe</creatorcontrib><creatorcontrib>Lloyd, Colton J</creatorcontrib><creatorcontrib>Monk, Jonathan M</creatorcontrib><creatorcontrib>Yang, Laurence</creatorcontrib><creatorcontrib>Sastry, Anand V</creatorcontrib><creatorcontrib>Seif, Yara</creatorcontrib><creatorcontrib>Palsson, Bernhard O</creatorcontrib><creatorcontrib>Rodrigue, Sébastien</creatorcontrib><creatorcontrib>Feist, Adam M</creatorcontrib><creatorcontrib>King, Zachary A</creatorcontrib><creatorcontrib>Jacques, Pierre-Étienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lachance, Jean-Christophe</au><au>Lloyd, Colton J</au><au>Monk, Jonathan M</au><au>Yang, Laurence</au><au>Sastry, Anand V</au><au>Seif, Yara</au><au>Palsson, Bernhard O</au><au>Rodrigue, Sébastien</au><au>Feist, Adam M</au><au>King, Zachary A</au><au>Jacques, Pierre-Étienne</au><au>Schneidman-Duhovny, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>e1006971</spage><epage>e1006971</epage><pages>e1006971-e1006971</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31009451</pmid><doi>10.1371/journal.pcbi.1006971</doi><orcidid>https://orcid.org/0000-0002-3096-6995</orcidid><orcidid>https://orcid.org/0000-0002-8293-3909</orcidid><orcidid>https://orcid.org/0000-0001-6663-7643</orcidid><orcidid>https://orcid.org/0000-0002-8630-4800</orcidid><orcidid>https://orcid.org/0000-0003-1238-1499</orcidid><orcidid>https://orcid.org/0000-0002-3961-294X</orcidid><orcidid>https://orcid.org/0000-0003-2357-6785</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-04, Vol.15 (4), p.e1006971-e1006971 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250643344 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Analysis Bioengineering Bioinformatics Biology and Life Sciences Biomass Coenzymes Composition Computational biology Computer and Information Sciences Computer applications Deoxyribonucleic acid DNA E coli Ecosystems Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Experimental data Funding Gems Genetic algorithms Genetic aspects Genome, Bacterial Genomes Genomics - methods Growth rate Hydroxides Ions Knowledge bases (artificial intelligence) Lipids Macromolecules Mathematical models Metabolic Networks and Pathways Metabolism Metabolites Methods Models, Biological Objective function Objectives Phenotypes Phylogenetics Physical Sciences Python (Programming language) Ribonucleic acid RNA Scale models Software Source code Species Supervision Teaching methods |
title | BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOFdat:%20Generating%20biomass%20objective%20functions%20for%20genome-scale%20metabolic%20models%20from%20experimental%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Lachance,%20Jean-Christophe&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=e1006971&rft.epage=e1006971&rft.pages=e1006971-e1006971&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006971&rft_dat=%3Cgale_plos_%3EA584292508%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250643344&rft_id=info:pmid/31009451&rft_galeid=A584292508&rft_doaj_id=oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2&rfr_iscdi=true |