Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling

A well-established notion in cognitive neuroscience proposes that multiple brain systems contribute to choice behaviour. These include: (1) a model-free system that uses values cached from the outcome history of alternative actions, and (2) a model-based system that considers action outcomes and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-02, Vol.15 (2), p.e1006803-e1006803
Hauptverfasser: Shahar, Nitzan, Hauser, Tobias U, Moutoussis, Michael, Moran, Rani, Keramati, Mehdi, Dolan, Raymond J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006803
container_issue 2
container_start_page e1006803
container_title PLoS computational biology
container_volume 15
creator Shahar, Nitzan
Hauser, Tobias U
Moutoussis, Michael
Moran, Rani
Keramati, Mehdi
Dolan, Raymond J
description A well-established notion in cognitive neuroscience proposes that multiple brain systems contribute to choice behaviour. These include: (1) a model-free system that uses values cached from the outcome history of alternative actions, and (2) a model-based system that considers action outcomes and the transition structure of the environment. The widespread use of this distinction, across a range of applications, renders it important to index their distinct influences with high reliability. Here we consider the two-stage task, widely considered as a gold standard measure for the contribution of model-based and model-free systems to human choice. We tested the internal/temporal stability of measures from this task, including those estimated via an established computational model, as well as an extended model using drift-diffusion. Drift-diffusion modeling suggested that both choice in the first stage, and RTs in the second stage, are directly affected by a model-based/free trade-off parameter. Both parameter recovery and the stability of model-based estimates were poor but improved substantially when both choice and RT were used (compared to choice only), and when more trials (than conventionally used in research practice) were included in our analysis. The findings have implications for interpretation of past and future studies based on the use of the two-stage task, as well as for characterising the contribution of model-based processes to choice behaviour.
doi_str_mv 10.1371/journal.pcbi.1006803
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250637833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576916817</galeid><doaj_id>oai_doaj_org_article_89a0752e61d24bfabd6516f692dbec17</doaj_id><sourcerecordid>A576916817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-ec6da3dff75209f349770a8dde6dc9399950db678e3e27ee85ee5b5ccd38fc8c3</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEoqXwBggisYFFBjue-LJBqiouI1UgcVlbjn2c8TSJB9tp6WvwxHguHXUQG-RFLOf7_-Pz-xTFc4xmmDD8duWnMKp-ttatm2GEKEfkQXGKm4ZUjDT84b39SfEkxhVCeSvo4-KEINYIxNhp8XsxrIO_dmNXpiWUAXqnWte7dFt6Ww7eQF-1KoIpDWgXnR-rQV1tcIjJDSpBLN241aYbX8WkOjigZVLxqrxxaZmNlU4bdRZliRqzYXA2VcZZO23hbbHs_LR4ZFUf4dn-e1b8-PD--8Wn6vLLx8XF-WWlKSGpAk2NIsZa1tRIWDIXjCHFjQFqtCBCiAaZljIOBGoGwBuApm20NoRbzTU5K17ufNe9j3IfZ5R13SBKGCckE4sdYbxayXXI_YZb6ZWT2wMfOqlCcroHyYXKmdZAsannrVWtoQ2mloratKAxy17v9tWmdgCjYUxB9Uemx39Gt5Sdv5aUiPy6PBu83hsE_3PK6cvBRQ19r0bwU7435pRiMacb9NVf6L-7m-2oTuUG3Gh9rqvzMjA47UewLp-fN4wKTPm2hTdHgswk-JU6NcUoF9--_gf7-Zid71gdfIwB7CEVjORm1u-uLzezLveznmUv7id6EN0NN_kDdbj_XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250637833</pqid></control><display><type>article</type><title>Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Shahar, Nitzan ; Hauser, Tobias U ; Moutoussis, Michael ; Moran, Rani ; Keramati, Mehdi ; Dolan, Raymond J</creator><creatorcontrib>Shahar, Nitzan ; Hauser, Tobias U ; Moutoussis, Michael ; Moran, Rani ; Keramati, Mehdi ; Dolan, Raymond J ; NSPN consortium</creatorcontrib><description>A well-established notion in cognitive neuroscience proposes that multiple brain systems contribute to choice behaviour. These include: (1) a model-free system that uses values cached from the outcome history of alternative actions, and (2) a model-based system that considers action outcomes and the transition structure of the environment. The widespread use of this distinction, across a range of applications, renders it important to index their distinct influences with high reliability. Here we consider the two-stage task, widely considered as a gold standard measure for the contribution of model-based and model-free systems to human choice. We tested the internal/temporal stability of measures from this task, including those estimated via an established computational model, as well as an extended model using drift-diffusion. Drift-diffusion modeling suggested that both choice in the first stage, and RTs in the second stage, are directly affected by a model-based/free trade-off parameter. Both parameter recovery and the stability of model-based estimates were poor but improved substantially when both choice and RT were used (compared to choice only), and when more trials (than conventionally used in research practice) were included in our analysis. The findings have implications for interpretation of past and future studies based on the use of the two-stage task, as well as for characterising the contribution of model-based processes to choice behaviour.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006803</identifier><identifier>PMID: 30759077</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Aging ; Animals ; Biology and Life Sciences ; Brain ; Cognitive ability ; Cognitive neuroscience ; Computational Biology - methods ; Computational Biology - standards ; Computational neuroscience ; Computer and Information Sciences ; Decision making ; Decision Making - physiology ; Diffusion ; Diffusion models ; Drift ; Expected values ; Female ; Free trade ; Future predictions ; Humans ; International trade ; Male ; Management science ; Mathematical models ; Medical imaging ; Mental task performance ; Methods ; Model-based systems ; Models, Psychological ; Models, Statistical ; Nervous system ; Neurosciences ; Parameters ; Physical Sciences ; Psychiatry ; Reaction Time - physiology ; Reliability ; Reproducibility of Results ; Research and Analysis Methods ; Social Sciences ; Stability ; Studies ; Task analysis ; University colleges ; Young Adult</subject><ispartof>PLoS computational biology, 2019-02, Vol.15 (2), p.e1006803-e1006803</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Shahar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Shahar et al 2019 Shahar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-ec6da3dff75209f349770a8dde6dc9399950db678e3e27ee85ee5b5ccd38fc8c3</citedby><cites>FETCH-LOGICAL-c633t-ec6da3dff75209f349770a8dde6dc9399950db678e3e27ee85ee5b5ccd38fc8c3</cites><orcidid>0000-0002-1364-6738 ; 0000-0002-7997-8137 ; 0000-0002-4751-0425 ; 0000-0002-7641-2402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391008/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30759077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahar, Nitzan</creatorcontrib><creatorcontrib>Hauser, Tobias U</creatorcontrib><creatorcontrib>Moutoussis, Michael</creatorcontrib><creatorcontrib>Moran, Rani</creatorcontrib><creatorcontrib>Keramati, Mehdi</creatorcontrib><creatorcontrib>Dolan, Raymond J</creatorcontrib><creatorcontrib>NSPN consortium</creatorcontrib><title>Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A well-established notion in cognitive neuroscience proposes that multiple brain systems contribute to choice behaviour. These include: (1) a model-free system that uses values cached from the outcome history of alternative actions, and (2) a model-based system that considers action outcomes and the transition structure of the environment. The widespread use of this distinction, across a range of applications, renders it important to index their distinct influences with high reliability. Here we consider the two-stage task, widely considered as a gold standard measure for the contribution of model-based and model-free systems to human choice. We tested the internal/temporal stability of measures from this task, including those estimated via an established computational model, as well as an extended model using drift-diffusion. Drift-diffusion modeling suggested that both choice in the first stage, and RTs in the second stage, are directly affected by a model-based/free trade-off parameter. Both parameter recovery and the stability of model-based estimates were poor but improved substantially when both choice and RT were used (compared to choice only), and when more trials (than conventionally used in research practice) were included in our analysis. The findings have implications for interpretation of past and future studies based on the use of the two-stage task, as well as for characterising the contribution of model-based processes to choice behaviour.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aging</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Cognitive ability</subject><subject>Cognitive neuroscience</subject><subject>Computational Biology - methods</subject><subject>Computational Biology - standards</subject><subject>Computational neuroscience</subject><subject>Computer and Information Sciences</subject><subject>Decision making</subject><subject>Decision Making - physiology</subject><subject>Diffusion</subject><subject>Diffusion models</subject><subject>Drift</subject><subject>Expected values</subject><subject>Female</subject><subject>Free trade</subject><subject>Future predictions</subject><subject>Humans</subject><subject>International trade</subject><subject>Male</subject><subject>Management science</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Mental task performance</subject><subject>Methods</subject><subject>Model-based systems</subject><subject>Models, Psychological</subject><subject>Models, Statistical</subject><subject>Nervous system</subject><subject>Neurosciences</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Psychiatry</subject><subject>Reaction Time - physiology</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Stability</subject><subject>Studies</subject><subject>Task analysis</subject><subject>University colleges</subject><subject>Young Adult</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1DAUhiMEoqXwBggisYFFBjue-LJBqiouI1UgcVlbjn2c8TSJB9tp6WvwxHguHXUQG-RFLOf7_-Pz-xTFc4xmmDD8duWnMKp-ttatm2GEKEfkQXGKm4ZUjDT84b39SfEkxhVCeSvo4-KEINYIxNhp8XsxrIO_dmNXpiWUAXqnWte7dFt6Ww7eQF-1KoIpDWgXnR-rQV1tcIjJDSpBLN241aYbX8WkOjigZVLxqrxxaZmNlU4bdRZliRqzYXA2VcZZO23hbbHs_LR4ZFUf4dn-e1b8-PD--8Wn6vLLx8XF-WWlKSGpAk2NIsZa1tRIWDIXjCHFjQFqtCBCiAaZljIOBGoGwBuApm20NoRbzTU5K17ufNe9j3IfZ5R13SBKGCckE4sdYbxayXXI_YZb6ZWT2wMfOqlCcroHyYXKmdZAsannrVWtoQ2mloratKAxy17v9tWmdgCjYUxB9Uemx39Gt5Sdv5aUiPy6PBu83hsE_3PK6cvBRQ19r0bwU7435pRiMacb9NVf6L-7m-2oTuUG3Gh9rqvzMjA47UewLp-fN4wKTPm2hTdHgswk-JU6NcUoF9--_gf7-Zid71gdfIwB7CEVjORm1u-uLzezLveznmUv7id6EN0NN_kDdbj_XA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Shahar, Nitzan</creator><creator>Hauser, Tobias U</creator><creator>Moutoussis, Michael</creator><creator>Moran, Rani</creator><creator>Keramati, Mehdi</creator><creator>Dolan, Raymond J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1364-6738</orcidid><orcidid>https://orcid.org/0000-0002-7997-8137</orcidid><orcidid>https://orcid.org/0000-0002-4751-0425</orcidid><orcidid>https://orcid.org/0000-0002-7641-2402</orcidid></search><sort><creationdate>20190201</creationdate><title>Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling</title><author>Shahar, Nitzan ; Hauser, Tobias U ; Moutoussis, Michael ; Moran, Rani ; Keramati, Mehdi ; Dolan, Raymond J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-ec6da3dff75209f349770a8dde6dc9399950db678e3e27ee85ee5b5ccd38fc8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aging</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Cognitive ability</topic><topic>Cognitive neuroscience</topic><topic>Computational Biology - methods</topic><topic>Computational Biology - standards</topic><topic>Computational neuroscience</topic><topic>Computer and Information Sciences</topic><topic>Decision making</topic><topic>Decision Making - physiology</topic><topic>Diffusion</topic><topic>Diffusion models</topic><topic>Drift</topic><topic>Expected values</topic><topic>Female</topic><topic>Free trade</topic><topic>Future predictions</topic><topic>Humans</topic><topic>International trade</topic><topic>Male</topic><topic>Management science</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Mental task performance</topic><topic>Methods</topic><topic>Model-based systems</topic><topic>Models, Psychological</topic><topic>Models, Statistical</topic><topic>Nervous system</topic><topic>Neurosciences</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Psychiatry</topic><topic>Reaction Time - physiology</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Stability</topic><topic>Studies</topic><topic>Task analysis</topic><topic>University colleges</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahar, Nitzan</creatorcontrib><creatorcontrib>Hauser, Tobias U</creatorcontrib><creatorcontrib>Moutoussis, Michael</creatorcontrib><creatorcontrib>Moran, Rani</creatorcontrib><creatorcontrib>Keramati, Mehdi</creatorcontrib><creatorcontrib>Dolan, Raymond J</creatorcontrib><creatorcontrib>NSPN consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahar, Nitzan</au><au>Hauser, Tobias U</au><au>Moutoussis, Michael</au><au>Moran, Rani</au><au>Keramati, Mehdi</au><au>Dolan, Raymond J</au><aucorp>NSPN consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>e1006803</spage><epage>e1006803</epage><pages>e1006803-e1006803</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A well-established notion in cognitive neuroscience proposes that multiple brain systems contribute to choice behaviour. These include: (1) a model-free system that uses values cached from the outcome history of alternative actions, and (2) a model-based system that considers action outcomes and the transition structure of the environment. The widespread use of this distinction, across a range of applications, renders it important to index their distinct influences with high reliability. Here we consider the two-stage task, widely considered as a gold standard measure for the contribution of model-based and model-free systems to human choice. We tested the internal/temporal stability of measures from this task, including those estimated via an established computational model, as well as an extended model using drift-diffusion. Drift-diffusion modeling suggested that both choice in the first stage, and RTs in the second stage, are directly affected by a model-based/free trade-off parameter. Both parameter recovery and the stability of model-based estimates were poor but improved substantially when both choice and RT were used (compared to choice only), and when more trials (than conventionally used in research practice) were included in our analysis. The findings have implications for interpretation of past and future studies based on the use of the two-stage task, as well as for characterising the contribution of model-based processes to choice behaviour.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30759077</pmid><doi>10.1371/journal.pcbi.1006803</doi><orcidid>https://orcid.org/0000-0002-1364-6738</orcidid><orcidid>https://orcid.org/0000-0002-7997-8137</orcidid><orcidid>https://orcid.org/0000-0002-4751-0425</orcidid><orcidid>https://orcid.org/0000-0002-7641-2402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-02, Vol.15 (2), p.e1006803-e1006803
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250637833
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adolescent
Adult
Aging
Animals
Biology and Life Sciences
Brain
Cognitive ability
Cognitive neuroscience
Computational Biology - methods
Computational Biology - standards
Computational neuroscience
Computer and Information Sciences
Decision making
Decision Making - physiology
Diffusion
Diffusion models
Drift
Expected values
Female
Free trade
Future predictions
Humans
International trade
Male
Management science
Mathematical models
Medical imaging
Mental task performance
Methods
Model-based systems
Models, Psychological
Models, Statistical
Nervous system
Neurosciences
Parameters
Physical Sciences
Psychiatry
Reaction Time - physiology
Reliability
Reproducibility of Results
Research and Analysis Methods
Social Sciences
Stability
Studies
Task analysis
University colleges
Young Adult
title Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20reliability%20of%20model-based%20decision-making%20estimates%20in%20the%20two-stage%20decision%20task%20with%20reaction-times%20and%20drift-diffusion%20modeling&rft.jtitle=PLoS%20computational%20biology&rft.au=Shahar,%20Nitzan&rft.aucorp=NSPN%20consortium&rft.date=2019-02-01&rft.volume=15&rft.issue=2&rft.spage=e1006803&rft.epage=e1006803&rft.pages=e1006803-e1006803&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006803&rft_dat=%3Cgale_plos_%3EA576916817%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250637833&rft_id=info:pmid/30759077&rft_galeid=A576916817&rft_doaj_id=oai_doaj_org_article_89a0752e61d24bfabd6516f692dbec17&rfr_iscdi=true