Deep convolutional networks do not classify based on global object shape
Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information i...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2018-12, Vol.14 (12), p.e1006613-e1006613 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006613 |
---|---|
container_issue | 12 |
container_start_page | e1006613 |
container_title | PLoS computational biology |
container_volume | 14 |
creator | Baker, Nicholas Lu, Hongjing Erlikhman, Gennady Kellman, Philip J |
description | Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2-4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object's bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes. |
doi_str_mv | 10.1371/journal.pcbi.1006613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250637594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_343928ea302b497caa6f0b2135a8aec9</doaj_id><sourcerecordid>2250637594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-c646c2e5f4dd87a05dbf5c57a7ed22297893afca8517a97f42fbb808a72686873</originalsourceid><addsrcrecordid>eNptkktv1DAUhS0EoqXwDxBYYtPNDH7Ej2yQqlJopUpsYG1dO_Y0gycOdlLUf4-HSasWsfKVfe7nc-2D0FtK1pQr-nGb5jxAXI_O9mtKiJSUP0PHVAi-Ulzo54_qI_SqlC0htWzlS3TEieCMKX6MLj97P2KXhtsU56lPlYgHP_1O-WfBXcJDmrCLUEof7rCF4jucBryJyVZhslvvJlxuYPSv0YsAsfg3y3qCfny5-H5-ubr-9vXq_Ox65QST08rJRjrmRWi6TisgorNBOKFA-Y4x1irdcggOtKAKWhUaFqzVRINiUkut-Al6f-COMRWzPEIxjAkiuRJtUxVXB0WXYGvG3O8g35kEvfm7kfLGQJ56F73hDW-Z9sAJs02rHIAMxDLKBWjwrq2sT8tts935zvlhyhCfQJ-eDP2N2aRbIzmRrNkDThdATr9mXyaz64vzMcLg01x91z-iglQXVfrhH-n_p2sOKpdTKdmHBzOUmH0w7rvMPhhmCUZte_d4kIem-yTwPyM2tmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250637594</pqid></control><display><type>article</type><title>Deep convolutional networks do not classify based on global object shape</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Baker, Nicholas ; Lu, Hongjing ; Erlikhman, Gennady ; Kellman, Philip J</creator><contributor>Einhäuser, Wolfgang</contributor><creatorcontrib>Baker, Nicholas ; Lu, Hongjing ; Erlikhman, Gennady ; Kellman, Philip J ; Einhäuser, Wolfgang</creatorcontrib><description>Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2-4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object's bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006613</identifier><identifier>PMID: 30532273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Architecture ; Biology and Life Sciences ; Classification ; Cognition & reasoning ; Cognitive psychology ; Computational Biology ; Computer and Information Sciences ; Deep Learning ; Experimental psychology ; Form Perception ; Human performance ; Humans ; Neural networks ; Neural Networks, Computer ; Object recognition ; Pattern Recognition, Automated - statistics & numerical data ; Pattern Recognition, Visual ; Photic Stimulation ; Physical Sciences ; Psychology of learning ; Research and Analysis Methods ; Shape recognition ; Social Sciences ; Statuary ; Surface layers ; Vision ; Visual perception</subject><ispartof>PLoS computational biology, 2018-12, Vol.14 (12), p.e1006613-e1006613</ispartof><rights>2018 Baker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Baker et al 2018 Baker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-c646c2e5f4dd87a05dbf5c57a7ed22297893afca8517a97f42fbb808a72686873</citedby><cites>FETCH-LOGICAL-c526t-c646c2e5f4dd87a05dbf5c57a7ed22297893afca8517a97f42fbb808a72686873</cites><orcidid>0000-0002-0673-2486 ; 0000-0002-9594-2660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30532273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Einhäuser, Wolfgang</contributor><creatorcontrib>Baker, Nicholas</creatorcontrib><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Erlikhman, Gennady</creatorcontrib><creatorcontrib>Kellman, Philip J</creatorcontrib><title>Deep convolutional networks do not classify based on global object shape</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2-4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object's bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Architecture</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Cognition & reasoning</subject><subject>Cognitive psychology</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Deep Learning</subject><subject>Experimental psychology</subject><subject>Form Perception</subject><subject>Human performance</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>Pattern Recognition, Automated - statistics & numerical data</subject><subject>Pattern Recognition, Visual</subject><subject>Photic Stimulation</subject><subject>Physical Sciences</subject><subject>Psychology of learning</subject><subject>Research and Analysis Methods</subject><subject>Shape recognition</subject><subject>Social Sciences</subject><subject>Statuary</subject><subject>Surface layers</subject><subject>Vision</subject><subject>Visual perception</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhS0EoqXwDxBYYtPNDH7Ej2yQqlJopUpsYG1dO_Y0gycOdlLUf4-HSasWsfKVfe7nc-2D0FtK1pQr-nGb5jxAXI_O9mtKiJSUP0PHVAi-Ulzo54_qI_SqlC0htWzlS3TEieCMKX6MLj97P2KXhtsU56lPlYgHP_1O-WfBXcJDmrCLUEof7rCF4jucBryJyVZhslvvJlxuYPSv0YsAsfg3y3qCfny5-H5-ubr-9vXq_Ox65QST08rJRjrmRWi6TisgorNBOKFA-Y4x1irdcggOtKAKWhUaFqzVRINiUkut-Al6f-COMRWzPEIxjAkiuRJtUxVXB0WXYGvG3O8g35kEvfm7kfLGQJ56F73hDW-Z9sAJs02rHIAMxDLKBWjwrq2sT8tts935zvlhyhCfQJ-eDP2N2aRbIzmRrNkDThdATr9mXyaz64vzMcLg01x91z-iglQXVfrhH-n_p2sOKpdTKdmHBzOUmH0w7rvMPhhmCUZte_d4kIem-yTwPyM2tmw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Baker, Nicholas</creator><creator>Lu, Hongjing</creator><creator>Erlikhman, Gennady</creator><creator>Kellman, Philip J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0673-2486</orcidid><orcidid>https://orcid.org/0000-0002-9594-2660</orcidid></search><sort><creationdate>20181201</creationdate><title>Deep convolutional networks do not classify based on global object shape</title><author>Baker, Nicholas ; Lu, Hongjing ; Erlikhman, Gennady ; Kellman, Philip J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-c646c2e5f4dd87a05dbf5c57a7ed22297893afca8517a97f42fbb808a72686873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Architecture</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Cognition & reasoning</topic><topic>Cognitive psychology</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Deep Learning</topic><topic>Experimental psychology</topic><topic>Form Perception</topic><topic>Human performance</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>Pattern Recognition, Automated - statistics & numerical data</topic><topic>Pattern Recognition, Visual</topic><topic>Photic Stimulation</topic><topic>Physical Sciences</topic><topic>Psychology of learning</topic><topic>Research and Analysis Methods</topic><topic>Shape recognition</topic><topic>Social Sciences</topic><topic>Statuary</topic><topic>Surface layers</topic><topic>Vision</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Nicholas</creatorcontrib><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Erlikhman, Gennady</creatorcontrib><creatorcontrib>Kellman, Philip J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Nicholas</au><au>Lu, Hongjing</au><au>Erlikhman, Gennady</au><au>Kellman, Philip J</au><au>Einhäuser, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep convolutional networks do not classify based on global object shape</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>14</volume><issue>12</issue><spage>e1006613</spage><epage>e1006613</epage><pages>e1006613-e1006613</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2-4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object's bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30532273</pmid><doi>10.1371/journal.pcbi.1006613</doi><orcidid>https://orcid.org/0000-0002-0673-2486</orcidid><orcidid>https://orcid.org/0000-0002-9594-2660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2018-12, Vol.14 (12), p.e1006613-e1006613 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250637594 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Animals Architecture Biology and Life Sciences Classification Cognition & reasoning Cognitive psychology Computational Biology Computer and Information Sciences Deep Learning Experimental psychology Form Perception Human performance Humans Neural networks Neural Networks, Computer Object recognition Pattern Recognition, Automated - statistics & numerical data Pattern Recognition, Visual Photic Stimulation Physical Sciences Psychology of learning Research and Analysis Methods Shape recognition Social Sciences Statuary Surface layers Vision Visual perception |
title | Deep convolutional networks do not classify based on global object shape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20convolutional%20networks%20do%20not%20classify%20based%20on%20global%20object%20shape&rft.jtitle=PLoS%20computational%20biology&rft.au=Baker,%20Nicholas&rft.date=2018-12-01&rft.volume=14&rft.issue=12&rft.spage=e1006613&rft.epage=e1006613&rft.pages=e1006613-e1006613&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006613&rft_dat=%3Cproquest_plos_%3E2250637594%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250637594&rft_id=info:pmid/30532273&rft_doaj_id=oai_doaj_org_article_343928ea302b497caa6f0b2135a8aec9&rfr_iscdi=true |