Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours

An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and computational efficiency is predicated on the assumption that detailed force fields are typically well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-12, Vol.14 (12), p.e1006578-e1006578
Hauptverfasser: Jumper, John M, Faruk, Nabil F, Freed, Karl F, Sosnick, Tobin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006578
container_issue 12
container_start_page e1006578
container_title PLoS computational biology
container_volume 14
creator Jumper, John M
Faruk, Nabil F
Freed, Karl F
Sosnick, Tobin R
description An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and computational efficiency is predicated on the assumption that detailed force fields are typically well-parameterized, obtaining a significant fraction of possible accuracy. We re-examine this trade-off in the more realistic regime in which parameterization is a greater source of error than the level of detail in the force field. To address parameterization of coarse-grained force fields, we use the contrastive divergence technique from machine learning to train from simulations of 450 proteins. In our procedure, the computational efficiency of the model enables high accuracy through the precise tuning of the Boltzmann ensemble. This method is applied to our recently developed Upside model, where the free energy for side chains is rapidly calculated at every time-step, allowing for a smooth energy landscape without steric rattling of the side chains. After this contrastive divergence training, the model is able to de novo fold proteins up to 100 residues on a single core in days. This improved Upside model provides a starting point both for investigation of folding dynamics and as an inexpensive Bayesian prior for protein physics that can be integrated with additional experimental or bioinformatic data.
doi_str_mv 10.1371/journal.pcbi.1006578
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250636805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_77024e231a02488287694c95dea0776d</doaj_id><sourcerecordid>2250636805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-8bafb8c09a29d4df1d2b2ec3fd1b50284ba0b42064280c3a0d3df2c377399f1a3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJC5cs_khs54IEFR-VKnEpZ2tiO7teOXawnaLy6_F206pFnGZkv_fmzehV1WuMNphy_GEflujBbWY12A1GiHVcPKlOcdfRhtNOPH3Qn1QvUtojVNqePa9OKCqNoO1pNV9F2BuVQ7xpBkhG1zmC9dZva-NhcCbVcwzZWF8nOy0Osg0-1b9t3tWg1BIhm3oMTh8Y4HX9Obj8ZwLvCz-Z6VahkNW8NLviOL2sno3gknm11rPq59cvV-ffm8sf3y7OP102qiMsN2KAcRAK9UB63eoRazIQo-io8dAhItoB0NASxFoikKKANNUjUZRz2vcjBnpWvT3qzi4kuR4rSUI6xCgTqCuIiyNCB9jLOdoJ4o0MYOXtQ4hbCTFb5YzkHJHWEIqhVCGI4KxvVd9pA4hzpovWx3XaMkxGK-PLGd0j0cc_3u7kNlxLRosAbovA-1Ughl-LSVlONinjHHgTluIbM8wRpvTg-90_0P9v1x5RKoaUohnvzWAkDwG6Y8lDgOQaoEJ783CRe9JdYuhf4V7Fzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250636805</pqid></control><display><type>article</type><title>Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Jumper, John M ; Faruk, Nabil F ; Freed, Karl F ; Sosnick, Tobin R</creator><contributor>Dunbrack, Roland L.</contributor><creatorcontrib>Jumper, John M ; Faruk, Nabil F ; Freed, Karl F ; Sosnick, Tobin R ; Dunbrack, Roland L.</creatorcontrib><description>An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and computational efficiency is predicated on the assumption that detailed force fields are typically well-parameterized, obtaining a significant fraction of possible accuracy. We re-examine this trade-off in the more realistic regime in which parameterization is a greater source of error than the level of detail in the force field. To address parameterization of coarse-grained force fields, we use the contrastive divergence technique from machine learning to train from simulations of 450 proteins. In our procedure, the computational efficiency of the model enables high accuracy through the precise tuning of the Boltzmann ensemble. This method is applied to our recently developed Upside model, where the free energy for side chains is rapidly calculated at every time-step, allowing for a smooth energy landscape without steric rattling of the side chains. After this contrastive divergence training, the model is able to de novo fold proteins up to 100 residues on a single core in days. This improved Upside model provides a starting point both for investigation of folding dynamics and as an inexpensive Bayesian prior for protein physics that can be integrated with additional experimental or bioinformatic data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006578</identifier><identifier>PMID: 30589834</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biochemistry ; Bioinformatics ; Biology and Life Sciences ; Chains ; Chemistry ; Computational Biology - methods ; Computational efficiency ; Computer applications ; Computer Simulation ; Computing time ; Divergence ; Energy ; Folding ; Free energy ; Hydrogen ; Learning algorithms ; Machine Learning ; Model accuracy ; Molecular biology ; Molecular Dynamics Simulation - statistics &amp; numerical data ; Organic chemistry ; Parameter estimation ; Parameterization ; Physical Sciences ; Physics ; Protein Conformation ; Protein Folding ; Proteins ; Proteins - chemistry ; Research and Analysis Methods ; Software ; Solvents ; Thermodynamics ; Tradeoffs ; Training</subject><ispartof>PLoS computational biology, 2018-12, Vol.14 (12), p.e1006578-e1006578</ispartof><rights>2018 Jumper et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Jumper et al 2018 Jumper et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-8bafb8c09a29d4df1d2b2ec3fd1b50284ba0b42064280c3a0d3df2c377399f1a3</citedby><cites>FETCH-LOGICAL-c526t-8bafb8c09a29d4df1d2b2ec3fd1b50284ba0b42064280c3a0d3df2c377399f1a3</cites><orcidid>0000-0003-3687-7114 ; 0000-0002-2871-7244 ; 0000-0001-6169-6580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307714/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307714/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30589834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dunbrack, Roland L.</contributor><creatorcontrib>Jumper, John M</creatorcontrib><creatorcontrib>Faruk, Nabil F</creatorcontrib><creatorcontrib>Freed, Karl F</creatorcontrib><creatorcontrib>Sosnick, Tobin R</creatorcontrib><title>Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and computational efficiency is predicated on the assumption that detailed force fields are typically well-parameterized, obtaining a significant fraction of possible accuracy. We re-examine this trade-off in the more realistic regime in which parameterization is a greater source of error than the level of detail in the force field. To address parameterization of coarse-grained force fields, we use the contrastive divergence technique from machine learning to train from simulations of 450 proteins. In our procedure, the computational efficiency of the model enables high accuracy through the precise tuning of the Boltzmann ensemble. This method is applied to our recently developed Upside model, where the free energy for side chains is rapidly calculated at every time-step, allowing for a smooth energy landscape without steric rattling of the side chains. After this contrastive divergence training, the model is able to de novo fold proteins up to 100 residues on a single core in days. This improved Upside model provides a starting point both for investigation of folding dynamics and as an inexpensive Bayesian prior for protein physics that can be integrated with additional experimental or bioinformatic data.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Chains</subject><subject>Chemistry</subject><subject>Computational Biology - methods</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Computing time</subject><subject>Divergence</subject><subject>Energy</subject><subject>Folding</subject><subject>Free energy</subject><subject>Hydrogen</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Model accuracy</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation - statistics &amp; numerical data</subject><subject>Organic chemistry</subject><subject>Parameter estimation</subject><subject>Parameterization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Solvents</subject><subject>Thermodynamics</subject><subject>Tradeoffs</subject><subject>Training</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJC5cs_khs54IEFR-VKnEpZ2tiO7teOXawnaLy6_F206pFnGZkv_fmzehV1WuMNphy_GEflujBbWY12A1GiHVcPKlOcdfRhtNOPH3Qn1QvUtojVNqePa9OKCqNoO1pNV9F2BuVQ7xpBkhG1zmC9dZva-NhcCbVcwzZWF8nOy0Osg0-1b9t3tWg1BIhm3oMTh8Y4HX9Obj8ZwLvCz-Z6VahkNW8NLviOL2sno3gknm11rPq59cvV-ffm8sf3y7OP102qiMsN2KAcRAK9UB63eoRazIQo-io8dAhItoB0NASxFoikKKANNUjUZRz2vcjBnpWvT3qzi4kuR4rSUI6xCgTqCuIiyNCB9jLOdoJ4o0MYOXtQ4hbCTFb5YzkHJHWEIqhVCGI4KxvVd9pA4hzpovWx3XaMkxGK-PLGd0j0cc_3u7kNlxLRosAbovA-1Ughl-LSVlONinjHHgTluIbM8wRpvTg-90_0P9v1x5RKoaUohnvzWAkDwG6Y8lDgOQaoEJ783CRe9JdYuhf4V7Fzw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Jumper, John M</creator><creator>Faruk, Nabil F</creator><creator>Freed, Karl F</creator><creator>Sosnick, Tobin R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3687-7114</orcidid><orcidid>https://orcid.org/0000-0002-2871-7244</orcidid><orcidid>https://orcid.org/0000-0001-6169-6580</orcidid></search><sort><creationdate>20181201</creationdate><title>Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours</title><author>Jumper, John M ; Faruk, Nabil F ; Freed, Karl F ; Sosnick, Tobin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-8bafb8c09a29d4df1d2b2ec3fd1b50284ba0b42064280c3a0d3df2c377399f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Chains</topic><topic>Chemistry</topic><topic>Computational Biology - methods</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Computing time</topic><topic>Divergence</topic><topic>Energy</topic><topic>Folding</topic><topic>Free energy</topic><topic>Hydrogen</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Model accuracy</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation - statistics &amp; numerical data</topic><topic>Organic chemistry</topic><topic>Parameter estimation</topic><topic>Parameterization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Solvents</topic><topic>Thermodynamics</topic><topic>Tradeoffs</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jumper, John M</creatorcontrib><creatorcontrib>Faruk, Nabil F</creatorcontrib><creatorcontrib>Freed, Karl F</creatorcontrib><creatorcontrib>Sosnick, Tobin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jumper, John M</au><au>Faruk, Nabil F</au><au>Freed, Karl F</au><au>Sosnick, Tobin R</au><au>Dunbrack, Roland L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>14</volume><issue>12</issue><spage>e1006578</spage><epage>e1006578</epage><pages>e1006578-e1006578</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and computational efficiency is predicated on the assumption that detailed force fields are typically well-parameterized, obtaining a significant fraction of possible accuracy. We re-examine this trade-off in the more realistic regime in which parameterization is a greater source of error than the level of detail in the force field. To address parameterization of coarse-grained force fields, we use the contrastive divergence technique from machine learning to train from simulations of 450 proteins. In our procedure, the computational efficiency of the model enables high accuracy through the precise tuning of the Boltzmann ensemble. This method is applied to our recently developed Upside model, where the free energy for side chains is rapidly calculated at every time-step, allowing for a smooth energy landscape without steric rattling of the side chains. After this contrastive divergence training, the model is able to de novo fold proteins up to 100 residues on a single core in days. This improved Upside model provides a starting point both for investigation of folding dynamics and as an inexpensive Bayesian prior for protein physics that can be integrated with additional experimental or bioinformatic data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30589834</pmid><doi>10.1371/journal.pcbi.1006578</doi><orcidid>https://orcid.org/0000-0003-3687-7114</orcidid><orcidid>https://orcid.org/0000-0002-2871-7244</orcidid><orcidid>https://orcid.org/0000-0001-6169-6580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-12, Vol.14 (12), p.e1006578-e1006578
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250636805
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Bayes Theorem
Bayesian analysis
Biochemistry
Bioinformatics
Biology and Life Sciences
Chains
Chemistry
Computational Biology - methods
Computational efficiency
Computer applications
Computer Simulation
Computing time
Divergence
Energy
Folding
Free energy
Hydrogen
Learning algorithms
Machine Learning
Model accuracy
Molecular biology
Molecular Dynamics Simulation - statistics & numerical data
Organic chemistry
Parameter estimation
Parameterization
Physical Sciences
Physics
Protein Conformation
Protein Folding
Proteins
Proteins - chemistry
Research and Analysis Methods
Software
Solvents
Thermodynamics
Tradeoffs
Training
title Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory-based%20training%20enables%20protein%20simulations%20with%20accurate%20folding%20and%20Boltzmann%20ensembles%20in%20cpu-hours&rft.jtitle=PLoS%20computational%20biology&rft.au=Jumper,%20John%20M&rft.date=2018-12-01&rft.volume=14&rft.issue=12&rft.spage=e1006578&rft.epage=e1006578&rft.pages=e1006578-e1006578&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006578&rft_dat=%3Cproquest_plos_%3E2250636805%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250636805&rft_id=info:pmid/30589834&rft_doaj_id=oai_doaj_org_article_77024e231a02488287694c95dea0776d&rfr_iscdi=true