Social dynamics modeling of chrono-nutrition

Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-01, Vol.15 (1), p.e1006714-e1006714
Hauptverfasser: Di Stefano, Alessandro, Scatà, Marialisa, Vijayakumar, Supreeta, Angione, Claudio, La Corte, Aurelio, Liò, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006714
container_issue 1
container_start_page e1006714
container_title PLoS computational biology
container_volume 15
creator Di Stefano, Alessandro
Scatà, Marialisa
Vijayakumar, Supreeta
Angione, Claudio
La Corte, Aurelio
Liò, Pietro
description Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet. To quantify the complex dynamics of this interplay between gut and human behaviors we explore the "gut-human behavior axis" and its evolutionary dynamics in a real-world scenario represented by the social multiplex network. We consider a dual type of similarity, homophily and gut similarity, other than psychological and unconscious biases. We analyze the dynamics of social and gut microbial communities, quantifying the impact of human behaviors on diets and gut microbial composition and, backwards, through a control mechanism. Meal timing mechanisms and "chrono-nutrition" play a crucial role in feeding behaviors, along with the quality and quantity of food intake. Considering a population of shift workers, we explore the dynamic interplay between their eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a multiplex network. Our findings allow us to quantify the relation between human behaviors and gut microbiota through the methodological introduction of gut metabolic modeling and statistical estimators, able to capture their dynamic interplay. Moreover, we find that the timing of gut microbial communities is slower than social interactions and shift-working, and the impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation between gut microbiota and the dietary behavioral patterns, by embedding also the related social aspects, allows improving the overall knowledge about metabolic models and their implications for human health, opening the possibility to design promising social therapeutic dietary interventions.
doi_str_mv 10.1371/journal.pcbi.1006714
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250635870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571884006</galeid><doaj_id>oai_doaj_org_article_84919faac9f9480582025bdfbf5bbbc4</doaj_id><sourcerecordid>A571884006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-455b1685d195edd35bfbcd92ec7366ca4c2186c48bc92aad4f9b26c6ac4d881a3</originalsourceid><addsrcrecordid>eNqVkltrFDEUxwdRbK1-A9EFXxScNfdJXoRSvCwUBavPIddplplkm8yI_fam7rR0xRfJQ8LJ7_zPtWmeQ7CGuIPvtmnOUQ3rndFhDQFgHSQPmmNIKW47TPnDe--j5kkpWwDqU7DHzREGTAgE2HHz9iKZoIaVvY5qDKasxmTdEGK_Sn5lLnOKqY3zlMMUUnzaPPJqKO7Zcp80Pz5--H72uT3_-mlzdnreGobx1BJKNWScWiiosxZT7bWxAjnTYcaMIgZBzgzh2giklCVeaMQMU4ZYzqHCJ83Lve5uSEUuhRaJEAWsltCBSmz2hE1qK3c5jCpfy6SC_GNIuZcqT8EMTnIioPBKGeEF4YByBBDV1mtPtdaGVK33S7RZj84aF6eshgPRw58YLmWffkqGO4CIqAKvF4GcrmZXJjmGYtwwqOjSXPOGnSCi4xRV9NVf6L-rW--pXtUCQvSpxjX1WFdnlKLzodpPaQc5J3Xy1eHNgUNlJvdr6tVcitxcfPsP9sshS_asyamU7PxdVyCQN1t4m7682UK5bGF1e3G_o3dOt2uHfwPwF9id</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250635870</pqid></control><display><type>article</type><title>Social dynamics modeling of chrono-nutrition</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Di Stefano, Alessandro ; Scatà, Marialisa ; Vijayakumar, Supreeta ; Angione, Claudio ; La Corte, Aurelio ; Liò, Pietro</creator><contributor>Nussinov, Ruth</contributor><creatorcontrib>Di Stefano, Alessandro ; Scatà, Marialisa ; Vijayakumar, Supreeta ; Angione, Claudio ; La Corte, Aurelio ; Liò, Pietro ; Nussinov, Ruth</creatorcontrib><description>Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet. To quantify the complex dynamics of this interplay between gut and human behaviors we explore the "gut-human behavior axis" and its evolutionary dynamics in a real-world scenario represented by the social multiplex network. We consider a dual type of similarity, homophily and gut similarity, other than psychological and unconscious biases. We analyze the dynamics of social and gut microbial communities, quantifying the impact of human behaviors on diets and gut microbial composition and, backwards, through a control mechanism. Meal timing mechanisms and "chrono-nutrition" play a crucial role in feeding behaviors, along with the quality and quantity of food intake. Considering a population of shift workers, we explore the dynamic interplay between their eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a multiplex network. Our findings allow us to quantify the relation between human behaviors and gut microbiota through the methodological introduction of gut metabolic modeling and statistical estimators, able to capture their dynamic interplay. Moreover, we find that the timing of gut microbial communities is slower than social interactions and shift-working, and the impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation between gut microbiota and the dietary behavioral patterns, by embedding also the related social aspects, allows improving the overall knowledge about metabolic models and their implications for human health, opening the possibility to design promising social therapeutic dietary interventions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006714</identifier><identifier>PMID: 30699206</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Autism ; Bacteria ; Behavior ; Bias ; Biology and Life Sciences ; Brain research ; Computer and Information Sciences ; Computer science ; Consortia ; Diet ; Disease ; DNA methylation ; Dynamics ; Eating behavior ; Embedding ; Food habits ; Food intake ; Funding ; Gastroenterology ; Health aspects ; Hepatology ; Human behavior ; Human nutrition ; Influence ; Information systems ; Interpersonal relations ; Intestinal microflora ; Mathematical models ; Meals ; Medicine and Health Sciences ; Metabolism ; Microbial activity ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; Modelling ; Multiplexing ; Nutrients ; Nutrition ; Nutrition research ; Occupational health ; Physiology ; Population (statistical) ; Similarity ; Social factors ; Social interactions ; Social networks ; Social organization ; Social Sciences ; Software ; Supervision ; Type 2 diabetes ; Workers</subject><ispartof>PLoS computational biology, 2019-01, Vol.15 (1), p.e1006714-e1006714</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Di Stefano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Di Stefano et al 2019 Di Stefano et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-455b1685d195edd35bfbcd92ec7366ca4c2186c48bc92aad4f9b26c6ac4d881a3</citedby><cites>FETCH-LOGICAL-c633t-455b1685d195edd35bfbcd92ec7366ca4c2186c48bc92aad4f9b26c6ac4d881a3</cites><orcidid>0000-0002-3140-7909 ; 0000-0001-6357-0439 ; 0000-0003-4905-3309 ; 0000-0002-4785-0067 ; 0000-0002-0540-5053 ; 0000-0003-0370-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30699206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nussinov, Ruth</contributor><creatorcontrib>Di Stefano, Alessandro</creatorcontrib><creatorcontrib>Scatà, Marialisa</creatorcontrib><creatorcontrib>Vijayakumar, Supreeta</creatorcontrib><creatorcontrib>Angione, Claudio</creatorcontrib><creatorcontrib>La Corte, Aurelio</creatorcontrib><creatorcontrib>Liò, Pietro</creatorcontrib><title>Social dynamics modeling of chrono-nutrition</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet. To quantify the complex dynamics of this interplay between gut and human behaviors we explore the "gut-human behavior axis" and its evolutionary dynamics in a real-world scenario represented by the social multiplex network. We consider a dual type of similarity, homophily and gut similarity, other than psychological and unconscious biases. We analyze the dynamics of social and gut microbial communities, quantifying the impact of human behaviors on diets and gut microbial composition and, backwards, through a control mechanism. Meal timing mechanisms and "chrono-nutrition" play a crucial role in feeding behaviors, along with the quality and quantity of food intake. Considering a population of shift workers, we explore the dynamic interplay between their eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a multiplex network. Our findings allow us to quantify the relation between human behaviors and gut microbiota through the methodological introduction of gut metabolic modeling and statistical estimators, able to capture their dynamic interplay. Moreover, we find that the timing of gut microbial communities is slower than social interactions and shift-working, and the impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation between gut microbiota and the dietary behavioral patterns, by embedding also the related social aspects, allows improving the overall knowledge about metabolic models and their implications for human health, opening the possibility to design promising social therapeutic dietary interventions.</description><subject>Autism</subject><subject>Bacteria</subject><subject>Behavior</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Consortia</subject><subject>Diet</subject><subject>Disease</subject><subject>DNA methylation</subject><subject>Dynamics</subject><subject>Eating behavior</subject><subject>Embedding</subject><subject>Food habits</subject><subject>Food intake</subject><subject>Funding</subject><subject>Gastroenterology</subject><subject>Health aspects</subject><subject>Hepatology</subject><subject>Human behavior</subject><subject>Human nutrition</subject><subject>Influence</subject><subject>Information systems</subject><subject>Interpersonal relations</subject><subject>Intestinal microflora</subject><subject>Mathematical models</subject><subject>Meals</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Multiplexing</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Nutrition research</subject><subject>Occupational health</subject><subject>Physiology</subject><subject>Population (statistical)</subject><subject>Similarity</subject><subject>Social factors</subject><subject>Social interactions</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Supervision</subject><subject>Type 2 diabetes</subject><subject>Workers</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUxwdRbK1-A9EFXxScNfdJXoRSvCwUBavPIddplplkm8yI_fam7rR0xRfJQ8LJ7_zPtWmeQ7CGuIPvtmnOUQ3rndFhDQFgHSQPmmNIKW47TPnDe--j5kkpWwDqU7DHzREGTAgE2HHz9iKZoIaVvY5qDKasxmTdEGK_Sn5lLnOKqY3zlMMUUnzaPPJqKO7Zcp80Pz5--H72uT3_-mlzdnreGobx1BJKNWScWiiosxZT7bWxAjnTYcaMIgZBzgzh2giklCVeaMQMU4ZYzqHCJ83Lve5uSEUuhRaJEAWsltCBSmz2hE1qK3c5jCpfy6SC_GNIuZcqT8EMTnIioPBKGeEF4YByBBDV1mtPtdaGVK33S7RZj84aF6eshgPRw58YLmWffkqGO4CIqAKvF4GcrmZXJjmGYtwwqOjSXPOGnSCi4xRV9NVf6L-rW--pXtUCQvSpxjX1WFdnlKLzodpPaQc5J3Xy1eHNgUNlJvdr6tVcitxcfPsP9sshS_asyamU7PxdVyCQN1t4m7682UK5bGF1e3G_o3dOt2uHfwPwF9id</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Di Stefano, Alessandro</creator><creator>Scatà, Marialisa</creator><creator>Vijayakumar, Supreeta</creator><creator>Angione, Claudio</creator><creator>La Corte, Aurelio</creator><creator>Liò, Pietro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3140-7909</orcidid><orcidid>https://orcid.org/0000-0001-6357-0439</orcidid><orcidid>https://orcid.org/0000-0003-4905-3309</orcidid><orcidid>https://orcid.org/0000-0002-4785-0067</orcidid><orcidid>https://orcid.org/0000-0002-0540-5053</orcidid><orcidid>https://orcid.org/0000-0003-0370-7717</orcidid></search><sort><creationdate>20190101</creationdate><title>Social dynamics modeling of chrono-nutrition</title><author>Di Stefano, Alessandro ; Scatà, Marialisa ; Vijayakumar, Supreeta ; Angione, Claudio ; La Corte, Aurelio ; Liò, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-455b1685d195edd35bfbcd92ec7366ca4c2186c48bc92aad4f9b26c6ac4d881a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autism</topic><topic>Bacteria</topic><topic>Behavior</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Consortia</topic><topic>Diet</topic><topic>Disease</topic><topic>DNA methylation</topic><topic>Dynamics</topic><topic>Eating behavior</topic><topic>Embedding</topic><topic>Food habits</topic><topic>Food intake</topic><topic>Funding</topic><topic>Gastroenterology</topic><topic>Health aspects</topic><topic>Hepatology</topic><topic>Human behavior</topic><topic>Human nutrition</topic><topic>Influence</topic><topic>Information systems</topic><topic>Interpersonal relations</topic><topic>Intestinal microflora</topic><topic>Mathematical models</topic><topic>Meals</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Multiplexing</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Nutrition research</topic><topic>Occupational health</topic><topic>Physiology</topic><topic>Population (statistical)</topic><topic>Similarity</topic><topic>Social factors</topic><topic>Social interactions</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Supervision</topic><topic>Type 2 diabetes</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Stefano, Alessandro</creatorcontrib><creatorcontrib>Scatà, Marialisa</creatorcontrib><creatorcontrib>Vijayakumar, Supreeta</creatorcontrib><creatorcontrib>Angione, Claudio</creatorcontrib><creatorcontrib>La Corte, Aurelio</creatorcontrib><creatorcontrib>Liò, Pietro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Stefano, Alessandro</au><au>Scatà, Marialisa</au><au>Vijayakumar, Supreeta</au><au>Angione, Claudio</au><au>La Corte, Aurelio</au><au>Liò, Pietro</au><au>Nussinov, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social dynamics modeling of chrono-nutrition</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>e1006714</spage><epage>e1006714</epage><pages>e1006714-e1006714</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet. To quantify the complex dynamics of this interplay between gut and human behaviors we explore the "gut-human behavior axis" and its evolutionary dynamics in a real-world scenario represented by the social multiplex network. We consider a dual type of similarity, homophily and gut similarity, other than psychological and unconscious biases. We analyze the dynamics of social and gut microbial communities, quantifying the impact of human behaviors on diets and gut microbial composition and, backwards, through a control mechanism. Meal timing mechanisms and "chrono-nutrition" play a crucial role in feeding behaviors, along with the quality and quantity of food intake. Considering a population of shift workers, we explore the dynamic interplay between their eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a multiplex network. Our findings allow us to quantify the relation between human behaviors and gut microbiota through the methodological introduction of gut metabolic modeling and statistical estimators, able to capture their dynamic interplay. Moreover, we find that the timing of gut microbial communities is slower than social interactions and shift-working, and the impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation between gut microbiota and the dietary behavioral patterns, by embedding also the related social aspects, allows improving the overall knowledge about metabolic models and their implications for human health, opening the possibility to design promising social therapeutic dietary interventions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30699206</pmid><doi>10.1371/journal.pcbi.1006714</doi><orcidid>https://orcid.org/0000-0002-3140-7909</orcidid><orcidid>https://orcid.org/0000-0001-6357-0439</orcidid><orcidid>https://orcid.org/0000-0003-4905-3309</orcidid><orcidid>https://orcid.org/0000-0002-4785-0067</orcidid><orcidid>https://orcid.org/0000-0002-0540-5053</orcidid><orcidid>https://orcid.org/0000-0003-0370-7717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-01, Vol.15 (1), p.e1006714-e1006714
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250635870
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Autism
Bacteria
Behavior
Bias
Biology and Life Sciences
Brain research
Computer and Information Sciences
Computer science
Consortia
Diet
Disease
DNA methylation
Dynamics
Eating behavior
Embedding
Food habits
Food intake
Funding
Gastroenterology
Health aspects
Hepatology
Human behavior
Human nutrition
Influence
Information systems
Interpersonal relations
Intestinal microflora
Mathematical models
Meals
Medicine and Health Sciences
Metabolism
Microbial activity
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
Modelling
Multiplexing
Nutrients
Nutrition
Nutrition research
Occupational health
Physiology
Population (statistical)
Similarity
Social factors
Social interactions
Social networks
Social organization
Social Sciences
Software
Supervision
Type 2 diabetes
Workers
title Social dynamics modeling of chrono-nutrition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20dynamics%20modeling%20of%20chrono-nutrition&rft.jtitle=PLoS%20computational%20biology&rft.au=Di%20Stefano,%20Alessandro&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=e1006714&rft.epage=e1006714&rft.pages=e1006714-e1006714&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006714&rft_dat=%3Cgale_plos_%3EA571884006%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250635870&rft_id=info:pmid/30699206&rft_galeid=A571884006&rft_doaj_id=oai_doaj_org_article_84919faac9f9480582025bdfbf5bbbc4&rfr_iscdi=true