Invasion and effective size of graph-structured populations

Population structure can strongly affect evolutionary dynamics. The most general way to describe population structures are graphs. An important observable on evolutionary graphs is the probability that a novel mutation spreads through the entire population. But what drives this spread of a mutation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-11, Vol.14 (11), p.e1006559-e1006559
Hauptverfasser: Giaimo, Stefano, Arranz, Jordi, Traulsen, Arne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006559
container_issue 11
container_start_page e1006559
container_title PLoS computational biology
container_volume 14
creator Giaimo, Stefano
Arranz, Jordi
Traulsen, Arne
description Population structure can strongly affect evolutionary dynamics. The most general way to describe population structures are graphs. An important observable on evolutionary graphs is the probability that a novel mutation spreads through the entire population. But what drives this spread of a mutation towards fixation? Here, we propose a novel way to understand the forces driving fixation by borrowing techniques from evolutionary demography to quantify the invasion fitness and the effective population size for different graphs. Our method is very general and even applies to weighted graphs with node dependent fitness. However, we focus on analytical results for undirected graphs with node independent fitness. The method will allow to conceptually integrate evolutionary graph theory with theoretical genetics of structured populations.
doi_str_mv 10.1371/journal.pcbi.1006559
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250635297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A564080820</galeid><doaj_id>oai_doaj_org_article_48b4aa11a0484f0b9a79c2b3fd2d3e1e</doaj_id><sourcerecordid>A564080820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-575803bebe7130c27f60edd7d26d65dc0bcb8f561c2c8a983963ccd22e82446c3</originalsourceid><addsrcrecordid>eNqVkltrFDEUxwdRbK1-A9EBX-rDrLlMLoMglOJloSh4eQ6Z5GSaZXYyTWYW66c3daelK75IHnJIfv__yTk5RfEcoxWmAr_ZhDkOul-NpvUrjBBnrHlQHGPGaCUokw_vxUfFk5Q2COWw4Y-LI4pq3CAsjou362Gnkw9DqQdbgnNgJr-DMvlfUAZXdlGPl1Wa4mymOYItxzDOvZ6yIj0tHjndJ3i27CfFjw_vv59_qi6-fFyfn11UhlM6VUwwiWgLLQhMkSHCcQTWCku45cwa1JpWOsaxIUbqRtKGU2MsISBJXXNDT4qXe9-xD0ktdSdFCEOcMtKITKz3hA16o8botzpeq6C9-nMQYqd0nLzpQdWyrbXGWKNa1g61jRaNIS11llgKGLLXuyXb3G7BGhimqPsD08ObwV-qLuwUJ0zmj8kGp4tBDFczpEltfTLQ93qAMOd3Y0oEbRpRZ_TVX-i_q1vtqU7nAvzgQs5r8rKw9SYM4Hw-P2O8RhJJgrLg9YEgMxP8nDo9p6TW377-B_v5kK33rIkhpQjurisYqZuhvH2-uhlKtQxllr2439E70e0U0t84cN29</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250635297</pqid></control><display><type>article</type><title>Invasion and effective size of graph-structured populations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Giaimo, Stefano ; Arranz, Jordi ; Traulsen, Arne</creator><contributor>Schreiber, Sebastian</contributor><creatorcontrib>Giaimo, Stefano ; Arranz, Jordi ; Traulsen, Arne ; Schreiber, Sebastian</creatorcontrib><description>Population structure can strongly affect evolutionary dynamics. The most general way to describe population structures are graphs. An important observable on evolutionary graphs is the probability that a novel mutation spreads through the entire population. But what drives this spread of a mutation towards fixation? Here, we propose a novel way to understand the forces driving fixation by borrowing techniques from evolutionary demography to quantify the invasion fitness and the effective population size for different graphs. Our method is very general and even applies to weighted graphs with node dependent fitness. However, we focus on analytical results for undirected graphs with node independent fitness. The method will allow to conceptually integrate evolutionary graph theory with theoretical genetics of structured populations.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006559</identifier><identifier>PMID: 30419017</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Biological Evolution ; Biology and Life Sciences ; Computer and Information Sciences ; Computer Simulation ; Demography ; Evolution ; Evolution (Biology) ; Evolutionary biology ; Fitness ; Fixation ; Game theory ; Genetics ; Graph theory ; Graphic methods ; Graphs ; Models, Biological ; Mutation ; Physical Sciences ; Population ; Population Dynamics ; Population genetics ; Population number ; Population research ; Population structure ; Populations ; Probability ; Reproductive fitness ; Society ; Theoretical genetics</subject><ispartof>PLoS computational biology, 2018-11, Vol.14 (11), p.e1006559-e1006559</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Giaimo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Giaimo et al 2018 Giaimo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-575803bebe7130c27f60edd7d26d65dc0bcb8f561c2c8a983963ccd22e82446c3</citedby><cites>FETCH-LOGICAL-c633t-575803bebe7130c27f60edd7d26d65dc0bcb8f561c2c8a983963ccd22e82446c3</cites><orcidid>0000-0003-0421-3065 ; 0000-0002-0669-5267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258371/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258371/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30419017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schreiber, Sebastian</contributor><creatorcontrib>Giaimo, Stefano</creatorcontrib><creatorcontrib>Arranz, Jordi</creatorcontrib><creatorcontrib>Traulsen, Arne</creatorcontrib><title>Invasion and effective size of graph-structured populations</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Population structure can strongly affect evolutionary dynamics. The most general way to describe population structures are graphs. An important observable on evolutionary graphs is the probability that a novel mutation spreads through the entire population. But what drives this spread of a mutation towards fixation? Here, we propose a novel way to understand the forces driving fixation by borrowing techniques from evolutionary demography to quantify the invasion fitness and the effective population size for different graphs. Our method is very general and even applies to weighted graphs with node dependent fitness. However, we focus on analytical results for undirected graphs with node independent fitness. The method will allow to conceptually integrate evolutionary graph theory with theoretical genetics of structured populations.</description><subject>Age</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Demography</subject><subject>Evolution</subject><subject>Evolution (Biology)</subject><subject>Evolutionary biology</subject><subject>Fitness</subject><subject>Fixation</subject><subject>Game theory</subject><subject>Genetics</subject><subject>Graph theory</subject><subject>Graphic methods</subject><subject>Graphs</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population Dynamics</subject><subject>Population genetics</subject><subject>Population number</subject><subject>Population research</subject><subject>Population structure</subject><subject>Populations</subject><subject>Probability</subject><subject>Reproductive fitness</subject><subject>Society</subject><subject>Theoretical genetics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUxwdRbK1-A9EBX-rDrLlMLoMglOJloSh4eQ6Z5GSaZXYyTWYW66c3daelK75IHnJIfv__yTk5RfEcoxWmAr_ZhDkOul-NpvUrjBBnrHlQHGPGaCUokw_vxUfFk5Q2COWw4Y-LI4pq3CAsjou362Gnkw9DqQdbgnNgJr-DMvlfUAZXdlGPl1Wa4mymOYItxzDOvZ6yIj0tHjndJ3i27CfFjw_vv59_qi6-fFyfn11UhlM6VUwwiWgLLQhMkSHCcQTWCku45cwa1JpWOsaxIUbqRtKGU2MsISBJXXNDT4qXe9-xD0ktdSdFCEOcMtKITKz3hA16o8botzpeq6C9-nMQYqd0nLzpQdWyrbXGWKNa1g61jRaNIS11llgKGLLXuyXb3G7BGhimqPsD08ObwV-qLuwUJ0zmj8kGp4tBDFczpEltfTLQ93qAMOd3Y0oEbRpRZ_TVX-i_q1vtqU7nAvzgQs5r8rKw9SYM4Hw-P2O8RhJJgrLg9YEgMxP8nDo9p6TW377-B_v5kK33rIkhpQjurisYqZuhvH2-uhlKtQxllr2439E70e0U0t84cN29</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Giaimo, Stefano</creator><creator>Arranz, Jordi</creator><creator>Traulsen, Arne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0421-3065</orcidid><orcidid>https://orcid.org/0000-0002-0669-5267</orcidid></search><sort><creationdate>20181101</creationdate><title>Invasion and effective size of graph-structured populations</title><author>Giaimo, Stefano ; Arranz, Jordi ; Traulsen, Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-575803bebe7130c27f60edd7d26d65dc0bcb8f561c2c8a983963ccd22e82446c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Demography</topic><topic>Evolution</topic><topic>Evolution (Biology)</topic><topic>Evolutionary biology</topic><topic>Fitness</topic><topic>Fixation</topic><topic>Game theory</topic><topic>Genetics</topic><topic>Graph theory</topic><topic>Graphic methods</topic><topic>Graphs</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population Dynamics</topic><topic>Population genetics</topic><topic>Population number</topic><topic>Population research</topic><topic>Population structure</topic><topic>Populations</topic><topic>Probability</topic><topic>Reproductive fitness</topic><topic>Society</topic><topic>Theoretical genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giaimo, Stefano</creatorcontrib><creatorcontrib>Arranz, Jordi</creatorcontrib><creatorcontrib>Traulsen, Arne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giaimo, Stefano</au><au>Arranz, Jordi</au><au>Traulsen, Arne</au><au>Schreiber, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invasion and effective size of graph-structured populations</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>14</volume><issue>11</issue><spage>e1006559</spage><epage>e1006559</epage><pages>e1006559-e1006559</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Population structure can strongly affect evolutionary dynamics. The most general way to describe population structures are graphs. An important observable on evolutionary graphs is the probability that a novel mutation spreads through the entire population. But what drives this spread of a mutation towards fixation? Here, we propose a novel way to understand the forces driving fixation by borrowing techniques from evolutionary demography to quantify the invasion fitness and the effective population size for different graphs. Our method is very general and even applies to weighted graphs with node dependent fitness. However, we focus on analytical results for undirected graphs with node independent fitness. The method will allow to conceptually integrate evolutionary graph theory with theoretical genetics of structured populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30419017</pmid><doi>10.1371/journal.pcbi.1006559</doi><orcidid>https://orcid.org/0000-0003-0421-3065</orcidid><orcidid>https://orcid.org/0000-0002-0669-5267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-11, Vol.14 (11), p.e1006559-e1006559
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250635297
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Age
Biological Evolution
Biology and Life Sciences
Computer and Information Sciences
Computer Simulation
Demography
Evolution
Evolution (Biology)
Evolutionary biology
Fitness
Fixation
Game theory
Genetics
Graph theory
Graphic methods
Graphs
Models, Biological
Mutation
Physical Sciences
Population
Population Dynamics
Population genetics
Population number
Population research
Population structure
Populations
Probability
Reproductive fitness
Society
Theoretical genetics
title Invasion and effective size of graph-structured populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invasion%20and%20effective%20size%20of%20graph-structured%20populations&rft.jtitle=PLoS%20computational%20biology&rft.au=Giaimo,%20Stefano&rft.date=2018-11-01&rft.volume=14&rft.issue=11&rft.spage=e1006559&rft.epage=e1006559&rft.pages=e1006559-e1006559&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006559&rft_dat=%3Cgale_plos_%3EA564080820%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250635297&rft_id=info:pmid/30419017&rft_galeid=A564080820&rft_doaj_id=oai_doaj_org_article_48b4aa11a0484f0b9a79c2b3fd2d3e1e&rfr_iscdi=true