The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow
Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distri...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2018-09, Vol.14 (9), p.e1006423-e1006423 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006423 |
---|---|
container_issue | 9 |
container_start_page | e1006423 |
container_title | PLoS computational biology |
container_volume | 14 |
creator | Migliore, Rosanna Lupascu, Carmen A Bologna, Luca L Romani, Armando Courcol, Jean-Denis Antonel, Stefano Van Geit, Werner A H Thomson, Alex M Mercer, Audrey Lange, Sigrun Falck, Joanne Rössert, Christian A Shi, Ying Hagens, Olivier Pezzoli, Maurizio Freund, Tamas F Kali, Szabolcs Muller, Eilif B Schürmann, Felix Markram, Henry Migliore, Michele |
description | Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry. |
doi_str_mv | 10.1371/journal.pcbi.1006423 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250633948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557637024</galeid><doaj_id>oai_doaj_org_article_1b5c26dffec440cb870c15ddfdbf90c4</doaj_id><sourcerecordid>A557637024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggscQMXu_iQw-YGabXisFIFEpRra-LDrotjp3ay7T4LL4vDplUX9QblIvb4m98zvzVZ9pLgOWEVeX_ph-DAzjvRmDnBuMwpe5SdkqJgs4oVi8f31ifZsxgvMU7LunyanTBMKa1yfJr9vtgq1G330XjrN0aARTsIBhpjTb9HXiOxBeeURVK5OIaMQ1vTdV5A2yV6tSSo2wdojUw7oayNCJxMWK-CU0PwLiJ101kflERDNG6DAA3OaJP2EnqYyWB2yqHWS2XH42sffmnrr59nTzTYqF5M_7Ps56ePF6svs_Nvn9er5flMVLTqZzVjAleU4EpioKwmqTXQlNYYMFZ5LgUhVFaNUCRvGilkJXRDIa9ZodiCUHaWvT7opiIjn3yNnNICl4zV-SIR6wMhPVzyLpgWwp57MPxvwIcNh9AbYRUnTSFoKbVWIs-xaBYVFqSQUstG11jkSevDdNvQtEoK5foA9kj0-MSZLd_4HS9JmZ4NJ4G3k0DwV4OKPW9NHI0Hp_yQ6iY4WVKkp07om3_Qh7ubqA2kBozTPt0rRlG-LIqqZBWmY93zB6j0SdUa4Z3SJsWPEt4dJSSmVzf9BoYY-frH9_9gvx6z-YEVwccYlL7zjmA-jsZtk3wcDT6NRkp7dd_3u6TbWWB_AFnkDTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250633948</pqid></control><display><type>article</type><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Migliore, Rosanna ; Lupascu, Carmen A ; Bologna, Luca L ; Romani, Armando ; Courcol, Jean-Denis ; Antonel, Stefano ; Van Geit, Werner A H ; Thomson, Alex M ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F ; Kali, Szabolcs ; Muller, Eilif B ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</creator><contributor>Lytton, William W</contributor><creatorcontrib>Migliore, Rosanna ; Lupascu, Carmen A ; Bologna, Luca L ; Romani, Armando ; Courcol, Jean-Denis ; Antonel, Stefano ; Van Geit, Werner A H ; Thomson, Alex M ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F ; Kali, Szabolcs ; Muller, Eilif B ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele ; Lytton, William W</creatorcontrib><description>Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006423</identifier><identifier>PMID: 30222740</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Biology and Life Sciences ; Biophysics ; Brain research ; Cell culture ; Circuits ; College campuses ; Computer simulation ; Conductance ; Councils ; Electrical properties ; Electrophysiology ; Firing pattern ; Funding ; Hippocampus ; Hippocampus (Brain) ; Hippocampus - physiology ; Information technology ; Interneurons ; Interneurons - physiology ; Ion channels ; Kinases ; Laboratories ; Male ; Mathematical models ; Medicine and Health Sciences ; Modelling ; Models, Neurological ; Neural circuitry ; Neurons ; Neurons - physiology ; Physical Sciences ; Physiological aspects ; Physiology ; Pyramidal cells ; Pyramidal Cells - physiology ; Rats ; Rats, Sprague-Dawley ; Resistance ; Spatial distribution ; Synaptic Transmission - physiology ; University colleges ; Variability ; Workflow</subject><ispartof>PLoS computational biology, 2018-09, Vol.14 (9), p.e1006423-e1006423</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Migliore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Migliore et al 2018 Migliore et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</citedby><cites>FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</cites><orcidid>0000-0001-6388-4286 ; 0000-0001-5379-8560 ; 0000-0002-7584-6292 ; 0000-0002-5086-2560 ; 0000-0003-4309-8266 ; 0000-0002-2740-6057 ; 0000-0001-9034-7849 ; 0000-0002-2915-720X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30222740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lytton, William W</contributor><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Lupascu, Carmen A</creatorcontrib><creatorcontrib>Bologna, Luca L</creatorcontrib><creatorcontrib>Romani, Armando</creatorcontrib><creatorcontrib>Courcol, Jean-Denis</creatorcontrib><creatorcontrib>Antonel, Stefano</creatorcontrib><creatorcontrib>Van Geit, Werner A H</creatorcontrib><creatorcontrib>Thomson, Alex M</creatorcontrib><creatorcontrib>Mercer, Audrey</creatorcontrib><creatorcontrib>Lange, Sigrun</creatorcontrib><creatorcontrib>Falck, Joanne</creatorcontrib><creatorcontrib>Rössert, Christian A</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Hagens, Olivier</creatorcontrib><creatorcontrib>Pezzoli, Maurizio</creatorcontrib><creatorcontrib>Freund, Tamas F</creatorcontrib><creatorcontrib>Kali, Szabolcs</creatorcontrib><creatorcontrib>Muller, Eilif B</creatorcontrib><creatorcontrib>Schürmann, Felix</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Brain research</subject><subject>Cell culture</subject><subject>Circuits</subject><subject>College campuses</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Councils</subject><subject>Electrical properties</subject><subject>Electrophysiology</subject><subject>Firing pattern</subject><subject>Funding</subject><subject>Hippocampus</subject><subject>Hippocampus (Brain)</subject><subject>Hippocampus - physiology</subject><subject>Information technology</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Resistance</subject><subject>Spatial distribution</subject><subject>Synaptic Transmission - physiology</subject><subject>University colleges</subject><subject>Variability</subject><subject>Workflow</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggscQMXu_iQw-YGabXisFIFEpRra-LDrotjp3ay7T4LL4vDplUX9QblIvb4m98zvzVZ9pLgOWEVeX_ph-DAzjvRmDnBuMwpe5SdkqJgs4oVi8f31ifZsxgvMU7LunyanTBMKa1yfJr9vtgq1G330XjrN0aARTsIBhpjTb9HXiOxBeeURVK5OIaMQ1vTdV5A2yV6tSSo2wdojUw7oayNCJxMWK-CU0PwLiJ101kflERDNG6DAA3OaJP2EnqYyWB2yqHWS2XH42sffmnrr59nTzTYqF5M_7Ps56ePF6svs_Nvn9er5flMVLTqZzVjAleU4EpioKwmqTXQlNYYMFZ5LgUhVFaNUCRvGilkJXRDIa9ZodiCUHaWvT7opiIjn3yNnNICl4zV-SIR6wMhPVzyLpgWwp57MPxvwIcNh9AbYRUnTSFoKbVWIs-xaBYVFqSQUstG11jkSevDdNvQtEoK5foA9kj0-MSZLd_4HS9JmZ4NJ4G3k0DwV4OKPW9NHI0Hp_yQ6iY4WVKkp07om3_Qh7ubqA2kBozTPt0rRlG-LIqqZBWmY93zB6j0SdUa4Z3SJsWPEt4dJSSmVzf9BoYY-frH9_9gvx6z-YEVwccYlL7zjmA-jsZtk3wcDT6NRkp7dd_3u6TbWWB_AFnkDTI</recordid><startdate>20180917</startdate><enddate>20180917</enddate><creator>Migliore, Rosanna</creator><creator>Lupascu, Carmen A</creator><creator>Bologna, Luca L</creator><creator>Romani, Armando</creator><creator>Courcol, Jean-Denis</creator><creator>Antonel, Stefano</creator><creator>Van Geit, Werner A H</creator><creator>Thomson, Alex M</creator><creator>Mercer, Audrey</creator><creator>Lange, Sigrun</creator><creator>Falck, Joanne</creator><creator>Rössert, Christian A</creator><creator>Shi, Ying</creator><creator>Hagens, Olivier</creator><creator>Pezzoli, Maurizio</creator><creator>Freund, Tamas F</creator><creator>Kali, Szabolcs</creator><creator>Muller, Eilif B</creator><creator>Schürmann, Felix</creator><creator>Markram, Henry</creator><creator>Migliore, Michele</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6388-4286</orcidid><orcidid>https://orcid.org/0000-0001-5379-8560</orcidid><orcidid>https://orcid.org/0000-0002-7584-6292</orcidid><orcidid>https://orcid.org/0000-0002-5086-2560</orcidid><orcidid>https://orcid.org/0000-0003-4309-8266</orcidid><orcidid>https://orcid.org/0000-0002-2740-6057</orcidid><orcidid>https://orcid.org/0000-0001-9034-7849</orcidid><orcidid>https://orcid.org/0000-0002-2915-720X</orcidid></search><sort><creationdate>20180917</creationdate><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><author>Migliore, Rosanna ; Lupascu, Carmen A ; Bologna, Luca L ; Romani, Armando ; Courcol, Jean-Denis ; Antonel, Stefano ; Van Geit, Werner A H ; Thomson, Alex M ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F ; Kali, Szabolcs ; Muller, Eilif B ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Brain research</topic><topic>Cell culture</topic><topic>Circuits</topic><topic>College campuses</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Councils</topic><topic>Electrical properties</topic><topic>Electrophysiology</topic><topic>Firing pattern</topic><topic>Funding</topic><topic>Hippocampus</topic><topic>Hippocampus (Brain)</topic><topic>Hippocampus - physiology</topic><topic>Information technology</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Resistance</topic><topic>Spatial distribution</topic><topic>Synaptic Transmission - physiology</topic><topic>University colleges</topic><topic>Variability</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Lupascu, Carmen A</creatorcontrib><creatorcontrib>Bologna, Luca L</creatorcontrib><creatorcontrib>Romani, Armando</creatorcontrib><creatorcontrib>Courcol, Jean-Denis</creatorcontrib><creatorcontrib>Antonel, Stefano</creatorcontrib><creatorcontrib>Van Geit, Werner A H</creatorcontrib><creatorcontrib>Thomson, Alex M</creatorcontrib><creatorcontrib>Mercer, Audrey</creatorcontrib><creatorcontrib>Lange, Sigrun</creatorcontrib><creatorcontrib>Falck, Joanne</creatorcontrib><creatorcontrib>Rössert, Christian A</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Hagens, Olivier</creatorcontrib><creatorcontrib>Pezzoli, Maurizio</creatorcontrib><creatorcontrib>Freund, Tamas F</creatorcontrib><creatorcontrib>Kali, Szabolcs</creatorcontrib><creatorcontrib>Muller, Eilif B</creatorcontrib><creatorcontrib>Schürmann, Felix</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Migliore, Rosanna</au><au>Lupascu, Carmen A</au><au>Bologna, Luca L</au><au>Romani, Armando</au><au>Courcol, Jean-Denis</au><au>Antonel, Stefano</au><au>Van Geit, Werner A H</au><au>Thomson, Alex M</au><au>Mercer, Audrey</au><au>Lange, Sigrun</au><au>Falck, Joanne</au><au>Rössert, Christian A</au><au>Shi, Ying</au><au>Hagens, Olivier</au><au>Pezzoli, Maurizio</au><au>Freund, Tamas F</au><au>Kali, Szabolcs</au><au>Muller, Eilif B</au><au>Schürmann, Felix</au><au>Markram, Henry</au><au>Migliore, Michele</au><au>Lytton, William W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-09-17</date><risdate>2018</risdate><volume>14</volume><issue>9</issue><spage>e1006423</spage><epage>e1006423</epage><pages>e1006423-e1006423</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30222740</pmid><doi>10.1371/journal.pcbi.1006423</doi><orcidid>https://orcid.org/0000-0001-6388-4286</orcidid><orcidid>https://orcid.org/0000-0001-5379-8560</orcidid><orcidid>https://orcid.org/0000-0002-7584-6292</orcidid><orcidid>https://orcid.org/0000-0002-5086-2560</orcidid><orcidid>https://orcid.org/0000-0003-4309-8266</orcidid><orcidid>https://orcid.org/0000-0002-2740-6057</orcidid><orcidid>https://orcid.org/0000-0001-9034-7849</orcidid><orcidid>https://orcid.org/0000-0002-2915-720X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2018-09, Vol.14 (9), p.e1006423-e1006423 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250633948 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Action Potentials - physiology Animals Biology and Life Sciences Biophysics Brain research Cell culture Circuits College campuses Computer simulation Conductance Councils Electrical properties Electrophysiology Firing pattern Funding Hippocampus Hippocampus (Brain) Hippocampus - physiology Information technology Interneurons Interneurons - physiology Ion channels Kinases Laboratories Male Mathematical models Medicine and Health Sciences Modelling Models, Neurological Neural circuitry Neurons Neurons - physiology Physical Sciences Physiological aspects Physiology Pyramidal cells Pyramidal Cells - physiology Rats Rats, Sprague-Dawley Resistance Spatial distribution Synaptic Transmission - physiology University colleges Variability Workflow |
title | The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20physiological%20variability%20of%20channel%20density%20in%20hippocampal%20CA1%20pyramidal%20cells%20and%20interneurons%20explored%20using%20a%20unified%20data-driven%20modeling%20workflow&rft.jtitle=PLoS%20computational%20biology&rft.au=Migliore,%20Rosanna&rft.date=2018-09-17&rft.volume=14&rft.issue=9&rft.spage=e1006423&rft.epage=e1006423&rft.pages=e1006423-e1006423&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006423&rft_dat=%3Cgale_plos_%3EA557637024%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250633948&rft_id=info:pmid/30222740&rft_galeid=A557637024&rft_doaj_id=oai_doaj_org_article_1b5c26dffec440cb870c15ddfdbf90c4&rfr_iscdi=true |