The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow

Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-09, Vol.14 (9), p.e1006423-e1006423
Hauptverfasser: Migliore, Rosanna, Lupascu, Carmen A, Bologna, Luca L, Romani, Armando, Courcol, Jean-Denis, Antonel, Stefano, Van Geit, Werner A H, Thomson, Alex M, Mercer, Audrey, Lange, Sigrun, Falck, Joanne, Rössert, Christian A, Shi, Ying, Hagens, Olivier, Pezzoli, Maurizio, Freund, Tamas F, Kali, Szabolcs, Muller, Eilif B, Schürmann, Felix, Markram, Henry, Migliore, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006423
container_issue 9
container_start_page e1006423
container_title PLoS computational biology
container_volume 14
creator Migliore, Rosanna
Lupascu, Carmen A
Bologna, Luca L
Romani, Armando
Courcol, Jean-Denis
Antonel, Stefano
Van Geit, Werner A H
Thomson, Alex M
Mercer, Audrey
Lange, Sigrun
Falck, Joanne
Rössert, Christian A
Shi, Ying
Hagens, Olivier
Pezzoli, Maurizio
Freund, Tamas F
Kali, Szabolcs
Muller, Eilif B
Schürmann, Felix
Markram, Henry
Migliore, Michele
description Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.
doi_str_mv 10.1371/journal.pcbi.1006423
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250633948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557637024</galeid><doaj_id>oai_doaj_org_article_1b5c26dffec440cb870c15ddfdbf90c4</doaj_id><sourcerecordid>A557637024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggscQMXu_iQw-YGabXisFIFEpRra-LDrotjp3ay7T4LL4vDplUX9QblIvb4m98zvzVZ9pLgOWEVeX_ph-DAzjvRmDnBuMwpe5SdkqJgs4oVi8f31ifZsxgvMU7LunyanTBMKa1yfJr9vtgq1G330XjrN0aARTsIBhpjTb9HXiOxBeeURVK5OIaMQ1vTdV5A2yV6tSSo2wdojUw7oayNCJxMWK-CU0PwLiJ101kflERDNG6DAA3OaJP2EnqYyWB2yqHWS2XH42sffmnrr59nTzTYqF5M_7Ps56ePF6svs_Nvn9er5flMVLTqZzVjAleU4EpioKwmqTXQlNYYMFZ5LgUhVFaNUCRvGilkJXRDIa9ZodiCUHaWvT7opiIjn3yNnNICl4zV-SIR6wMhPVzyLpgWwp57MPxvwIcNh9AbYRUnTSFoKbVWIs-xaBYVFqSQUstG11jkSevDdNvQtEoK5foA9kj0-MSZLd_4HS9JmZ4NJ4G3k0DwV4OKPW9NHI0Hp_yQ6iY4WVKkp07om3_Qh7ubqA2kBozTPt0rRlG-LIqqZBWmY93zB6j0SdUa4Z3SJsWPEt4dJSSmVzf9BoYY-frH9_9gvx6z-YEVwccYlL7zjmA-jsZtk3wcDT6NRkp7dd_3u6TbWWB_AFnkDTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250633948</pqid></control><display><type>article</type><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Migliore, Rosanna ; Lupascu, Carmen A ; Bologna, Luca L ; Romani, Armando ; Courcol, Jean-Denis ; Antonel, Stefano ; Van Geit, Werner A H ; Thomson, Alex M ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F ; Kali, Szabolcs ; Muller, Eilif B ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</creator><contributor>Lytton, William W</contributor><creatorcontrib>Migliore, Rosanna ; Lupascu, Carmen A ; Bologna, Luca L ; Romani, Armando ; Courcol, Jean-Denis ; Antonel, Stefano ; Van Geit, Werner A H ; Thomson, Alex M ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F ; Kali, Szabolcs ; Muller, Eilif B ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele ; Lytton, William W</creatorcontrib><description>Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006423</identifier><identifier>PMID: 30222740</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Biology and Life Sciences ; Biophysics ; Brain research ; Cell culture ; Circuits ; College campuses ; Computer simulation ; Conductance ; Councils ; Electrical properties ; Electrophysiology ; Firing pattern ; Funding ; Hippocampus ; Hippocampus (Brain) ; Hippocampus - physiology ; Information technology ; Interneurons ; Interneurons - physiology ; Ion channels ; Kinases ; Laboratories ; Male ; Mathematical models ; Medicine and Health Sciences ; Modelling ; Models, Neurological ; Neural circuitry ; Neurons ; Neurons - physiology ; Physical Sciences ; Physiological aspects ; Physiology ; Pyramidal cells ; Pyramidal Cells - physiology ; Rats ; Rats, Sprague-Dawley ; Resistance ; Spatial distribution ; Synaptic Transmission - physiology ; University colleges ; Variability ; Workflow</subject><ispartof>PLoS computational biology, 2018-09, Vol.14 (9), p.e1006423-e1006423</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Migliore et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Migliore et al 2018 Migliore et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</citedby><cites>FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</cites><orcidid>0000-0001-6388-4286 ; 0000-0001-5379-8560 ; 0000-0002-7584-6292 ; 0000-0002-5086-2560 ; 0000-0003-4309-8266 ; 0000-0002-2740-6057 ; 0000-0001-9034-7849 ; 0000-0002-2915-720X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30222740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lytton, William W</contributor><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Lupascu, Carmen A</creatorcontrib><creatorcontrib>Bologna, Luca L</creatorcontrib><creatorcontrib>Romani, Armando</creatorcontrib><creatorcontrib>Courcol, Jean-Denis</creatorcontrib><creatorcontrib>Antonel, Stefano</creatorcontrib><creatorcontrib>Van Geit, Werner A H</creatorcontrib><creatorcontrib>Thomson, Alex M</creatorcontrib><creatorcontrib>Mercer, Audrey</creatorcontrib><creatorcontrib>Lange, Sigrun</creatorcontrib><creatorcontrib>Falck, Joanne</creatorcontrib><creatorcontrib>Rössert, Christian A</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Hagens, Olivier</creatorcontrib><creatorcontrib>Pezzoli, Maurizio</creatorcontrib><creatorcontrib>Freund, Tamas F</creatorcontrib><creatorcontrib>Kali, Szabolcs</creatorcontrib><creatorcontrib>Muller, Eilif B</creatorcontrib><creatorcontrib>Schürmann, Felix</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Brain research</subject><subject>Cell culture</subject><subject>Circuits</subject><subject>College campuses</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Councils</subject><subject>Electrical properties</subject><subject>Electrophysiology</subject><subject>Firing pattern</subject><subject>Funding</subject><subject>Hippocampus</subject><subject>Hippocampus (Brain)</subject><subject>Hippocampus - physiology</subject><subject>Information technology</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Resistance</subject><subject>Spatial distribution</subject><subject>Synaptic Transmission - physiology</subject><subject>University colleges</subject><subject>Variability</subject><subject>Workflow</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggscQMXu_iQw-YGabXisFIFEpRra-LDrotjp3ay7T4LL4vDplUX9QblIvb4m98zvzVZ9pLgOWEVeX_ph-DAzjvRmDnBuMwpe5SdkqJgs4oVi8f31ifZsxgvMU7LunyanTBMKa1yfJr9vtgq1G330XjrN0aARTsIBhpjTb9HXiOxBeeURVK5OIaMQ1vTdV5A2yV6tSSo2wdojUw7oayNCJxMWK-CU0PwLiJ101kflERDNG6DAA3OaJP2EnqYyWB2yqHWS2XH42sffmnrr59nTzTYqF5M_7Ps56ePF6svs_Nvn9er5flMVLTqZzVjAleU4EpioKwmqTXQlNYYMFZ5LgUhVFaNUCRvGilkJXRDIa9ZodiCUHaWvT7opiIjn3yNnNICl4zV-SIR6wMhPVzyLpgWwp57MPxvwIcNh9AbYRUnTSFoKbVWIs-xaBYVFqSQUstG11jkSevDdNvQtEoK5foA9kj0-MSZLd_4HS9JmZ4NJ4G3k0DwV4OKPW9NHI0Hp_yQ6iY4WVKkp07om3_Qh7ubqA2kBozTPt0rRlG-LIqqZBWmY93zB6j0SdUa4Z3SJsWPEt4dJSSmVzf9BoYY-frH9_9gvx6z-YEVwccYlL7zjmA-jsZtk3wcDT6NRkp7dd_3u6TbWWB_AFnkDTI</recordid><startdate>20180917</startdate><enddate>20180917</enddate><creator>Migliore, Rosanna</creator><creator>Lupascu, Carmen A</creator><creator>Bologna, Luca L</creator><creator>Romani, Armando</creator><creator>Courcol, Jean-Denis</creator><creator>Antonel, Stefano</creator><creator>Van Geit, Werner A H</creator><creator>Thomson, Alex M</creator><creator>Mercer, Audrey</creator><creator>Lange, Sigrun</creator><creator>Falck, Joanne</creator><creator>Rössert, Christian A</creator><creator>Shi, Ying</creator><creator>Hagens, Olivier</creator><creator>Pezzoli, Maurizio</creator><creator>Freund, Tamas F</creator><creator>Kali, Szabolcs</creator><creator>Muller, Eilif B</creator><creator>Schürmann, Felix</creator><creator>Markram, Henry</creator><creator>Migliore, Michele</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6388-4286</orcidid><orcidid>https://orcid.org/0000-0001-5379-8560</orcidid><orcidid>https://orcid.org/0000-0002-7584-6292</orcidid><orcidid>https://orcid.org/0000-0002-5086-2560</orcidid><orcidid>https://orcid.org/0000-0003-4309-8266</orcidid><orcidid>https://orcid.org/0000-0002-2740-6057</orcidid><orcidid>https://orcid.org/0000-0001-9034-7849</orcidid><orcidid>https://orcid.org/0000-0002-2915-720X</orcidid></search><sort><creationdate>20180917</creationdate><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><author>Migliore, Rosanna ; Lupascu, Carmen A ; Bologna, Luca L ; Romani, Armando ; Courcol, Jean-Denis ; Antonel, Stefano ; Van Geit, Werner A H ; Thomson, Alex M ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F ; Kali, Szabolcs ; Muller, Eilif B ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-933c072107d0a2391227af2290a00e44dc112d7bce14bbdcd7cfb2a4935e38123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Brain research</topic><topic>Cell culture</topic><topic>Circuits</topic><topic>College campuses</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Councils</topic><topic>Electrical properties</topic><topic>Electrophysiology</topic><topic>Firing pattern</topic><topic>Funding</topic><topic>Hippocampus</topic><topic>Hippocampus (Brain)</topic><topic>Hippocampus - physiology</topic><topic>Information technology</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Resistance</topic><topic>Spatial distribution</topic><topic>Synaptic Transmission - physiology</topic><topic>University colleges</topic><topic>Variability</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Lupascu, Carmen A</creatorcontrib><creatorcontrib>Bologna, Luca L</creatorcontrib><creatorcontrib>Romani, Armando</creatorcontrib><creatorcontrib>Courcol, Jean-Denis</creatorcontrib><creatorcontrib>Antonel, Stefano</creatorcontrib><creatorcontrib>Van Geit, Werner A H</creatorcontrib><creatorcontrib>Thomson, Alex M</creatorcontrib><creatorcontrib>Mercer, Audrey</creatorcontrib><creatorcontrib>Lange, Sigrun</creatorcontrib><creatorcontrib>Falck, Joanne</creatorcontrib><creatorcontrib>Rössert, Christian A</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Hagens, Olivier</creatorcontrib><creatorcontrib>Pezzoli, Maurizio</creatorcontrib><creatorcontrib>Freund, Tamas F</creatorcontrib><creatorcontrib>Kali, Szabolcs</creatorcontrib><creatorcontrib>Muller, Eilif B</creatorcontrib><creatorcontrib>Schürmann, Felix</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Migliore, Rosanna</au><au>Lupascu, Carmen A</au><au>Bologna, Luca L</au><au>Romani, Armando</au><au>Courcol, Jean-Denis</au><au>Antonel, Stefano</au><au>Van Geit, Werner A H</au><au>Thomson, Alex M</au><au>Mercer, Audrey</au><au>Lange, Sigrun</au><au>Falck, Joanne</au><au>Rössert, Christian A</au><au>Shi, Ying</au><au>Hagens, Olivier</au><au>Pezzoli, Maurizio</au><au>Freund, Tamas F</au><au>Kali, Szabolcs</au><au>Muller, Eilif B</au><au>Schürmann, Felix</au><au>Markram, Henry</au><au>Migliore, Michele</au><au>Lytton, William W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-09-17</date><risdate>2018</risdate><volume>14</volume><issue>9</issue><spage>e1006423</spage><epage>e1006423</epage><pages>e1006423-e1006423</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30222740</pmid><doi>10.1371/journal.pcbi.1006423</doi><orcidid>https://orcid.org/0000-0001-6388-4286</orcidid><orcidid>https://orcid.org/0000-0001-5379-8560</orcidid><orcidid>https://orcid.org/0000-0002-7584-6292</orcidid><orcidid>https://orcid.org/0000-0002-5086-2560</orcidid><orcidid>https://orcid.org/0000-0003-4309-8266</orcidid><orcidid>https://orcid.org/0000-0002-2740-6057</orcidid><orcidid>https://orcid.org/0000-0001-9034-7849</orcidid><orcidid>https://orcid.org/0000-0002-2915-720X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-09, Vol.14 (9), p.e1006423-e1006423
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250633948
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Action Potentials - physiology
Animals
Biology and Life Sciences
Biophysics
Brain research
Cell culture
Circuits
College campuses
Computer simulation
Conductance
Councils
Electrical properties
Electrophysiology
Firing pattern
Funding
Hippocampus
Hippocampus (Brain)
Hippocampus - physiology
Information technology
Interneurons
Interneurons - physiology
Ion channels
Kinases
Laboratories
Male
Mathematical models
Medicine and Health Sciences
Modelling
Models, Neurological
Neural circuitry
Neurons
Neurons - physiology
Physical Sciences
Physiological aspects
Physiology
Pyramidal cells
Pyramidal Cells - physiology
Rats
Rats, Sprague-Dawley
Resistance
Spatial distribution
Synaptic Transmission - physiology
University colleges
Variability
Workflow
title The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20physiological%20variability%20of%20channel%20density%20in%20hippocampal%20CA1%20pyramidal%20cells%20and%20interneurons%20explored%20using%20a%20unified%20data-driven%20modeling%20workflow&rft.jtitle=PLoS%20computational%20biology&rft.au=Migliore,%20Rosanna&rft.date=2018-09-17&rft.volume=14&rft.issue=9&rft.spage=e1006423&rft.epage=e1006423&rft.pages=e1006423-e1006423&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006423&rft_dat=%3Cgale_plos_%3EA557637024%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250633948&rft_id=info:pmid/30222740&rft_galeid=A557637024&rft_doaj_id=oai_doaj_org_article_1b5c26dffec440cb870c15ddfdbf90c4&rfr_iscdi=true