RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor

RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-10, Vol.14 (10), p.e1006541-e1006541
Hauptverfasser: Wang, Hao, Marcišauskas, Simonas, Sánchez, Benjamín J, Domenzain, Iván, Hermansson, Daniel, Agren, Rasmus, Nielsen, Jens, Kerkhoven, Eduard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006541
container_issue 10
container_start_page e1006541
container_title PLoS computational biology
container_volume 14
creator Wang, Hao
Marcišauskas, Simonas
Sánchez, Benjamín J
Domenzain, Iván
Hermansson, Daniel
Agren, Rasmus
Nielsen, Jens
Kerkhoven, Eduard J
description RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM).
doi_str_mv 10.1371/journal.pcbi.1006541
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250632626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a03b54cefb746cc927752738b8b8294</doaj_id><sourcerecordid>2250632626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-1c5cbdc8169f1181a3ea4b0d040f708d2147b16001aedab81efafefe82856b843</originalsourceid><addsrcrecordid>eNp1Ul1vEzEQPCEQLYV_gMASL7wk-PscHpCiqkClCiQKvFpr315y4XIOtq8l_x6HpFWLQH6wtZ6Z3R1NVT1ndMpEzd6swhgH6Kcb77opo1QryR5Ux0wpMamFMg_vvI-qJymtKC3PmX5cHQkqhKqNOq7Cl_n3s0-ET-lbMidXGBPkrkeSQ-hd-EXaEMkaM7jQd54MmK9D_EEi-jCkHEefuzAQGBoCxENCkvLYbEmpXeaImxzWW4-J-ICFHvoQn1aPWugTPjvcJ9W392dfTz9OLj5_OD-dX0y8ljRPmFfeNd4wPWsZMwwEgnS0oZK2NTUNZ7J2TFPKABtwhmELLbZouFHaGSlOqpd73U0fkj14lSznimrBNdcFcb5HNAFWdhO7NcStDdDZP4UQFxZi7nyPlgIVTkmPraul9n7G61rxWhhXDp_tul3utdI1bkZ3Ty1iQoh-af0S-nUx2Ca0unbegQbrtZlZyTlYkMJYJVyjPKKRLRbVyX9VF-PGltJi3KmVUTjjBf_usPPo1th4HHKE_h7t_s_QLe0iXFnNaVHYrfH6IBDDzxFTtusueex7GDCMxb3SpOaGS1qgr_6C_ttjuUf5GFKK2N4Ow6jdpfiGZXcptocUF9qLu4vckm5iK34Dn2zyHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250632626</pqid></control><display><type>article</type><title>RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><creator>Wang, Hao ; Marcišauskas, Simonas ; Sánchez, Benjamín J ; Domenzain, Iván ; Hermansson, Daniel ; Agren, Rasmus ; Nielsen, Jens ; Kerkhoven, Eduard J</creator><creatorcontrib>Wang, Hao ; Marcišauskas, Simonas ; Sánchez, Benjamín J ; Domenzain, Iván ; Hermansson, Daniel ; Agren, Rasmus ; Nielsen, Jens ; Kerkhoven, Eduard J</creatorcontrib><description>RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006541</identifier><identifier>PMID: 30335785</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibiotics ; Automation ; Bioengineering ; Bioinformatics ; Biologi ; Biological Sciences ; Biology ; Biology and Life Sciences ; Biosynthesis ; Computational Biology - methods ; Computer and Information Sciences ; Computer Simulation ; Constraint modelling ; Databases, Genetic ; Engineering ; Gems ; Gene amplification ; Gene Editing ; Genome editing ; Genomes ; Genomics ; Metabolic networks ; Metabolic Networks and Pathways - genetics ; Metabolism ; Metabolites ; Models, Genetic ; Quality ; Reconstruction ; Research and Analysis Methods ; Secondary metabolites ; Software ; Streptomyces coelicolor ; Streptomyces coelicolor - genetics ; Streptomyces coelicolor - metabolism</subject><ispartof>PLoS computational biology, 2018-10, Vol.14 (10), p.e1006541-e1006541</ispartof><rights>2018 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Wang et al 2018 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-1c5cbdc8169f1181a3ea4b0d040f708d2147b16001aedab81efafefe82856b843</citedby><cites>FETCH-LOGICAL-c640t-1c5cbdc8169f1181a3ea4b0d040f708d2147b16001aedab81efafefe82856b843</cites><orcidid>0000-0001-7475-0136 ; 0000-0002-3593-5792 ; 0000-0002-9955-6003 ; 0000-0001-6093-4110 ; 0000-0003-0770-6383 ; 0000-0002-5322-2040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207324/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207324/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30335785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/273212$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/506786$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Marcišauskas, Simonas</creatorcontrib><creatorcontrib>Sánchez, Benjamín J</creatorcontrib><creatorcontrib>Domenzain, Iván</creatorcontrib><creatorcontrib>Hermansson, Daniel</creatorcontrib><creatorcontrib>Agren, Rasmus</creatorcontrib><creatorcontrib>Nielsen, Jens</creatorcontrib><creatorcontrib>Kerkhoven, Eduard J</creatorcontrib><title>RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM).</description><subject>Antibiotics</subject><subject>Automation</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Constraint modelling</subject><subject>Databases, Genetic</subject><subject>Engineering</subject><subject>Gems</subject><subject>Gene amplification</subject><subject>Gene Editing</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Genetic</subject><subject>Quality</subject><subject>Reconstruction</subject><subject>Research and Analysis Methods</subject><subject>Secondary metabolites</subject><subject>Software</subject><subject>Streptomyces coelicolor</subject><subject>Streptomyces coelicolor - genetics</subject><subject>Streptomyces coelicolor - metabolism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ul1vEzEQPCEQLYV_gMASL7wk-PscHpCiqkClCiQKvFpr315y4XIOtq8l_x6HpFWLQH6wtZ6Z3R1NVT1ndMpEzd6swhgH6Kcb77opo1QryR5Ux0wpMamFMg_vvI-qJymtKC3PmX5cHQkqhKqNOq7Cl_n3s0-ET-lbMidXGBPkrkeSQ-hd-EXaEMkaM7jQd54MmK9D_EEi-jCkHEefuzAQGBoCxENCkvLYbEmpXeaImxzWW4-J-ICFHvoQn1aPWugTPjvcJ9W392dfTz9OLj5_OD-dX0y8ljRPmFfeNd4wPWsZMwwEgnS0oZK2NTUNZ7J2TFPKABtwhmELLbZouFHaGSlOqpd73U0fkj14lSznimrBNdcFcb5HNAFWdhO7NcStDdDZP4UQFxZi7nyPlgIVTkmPraul9n7G61rxWhhXDp_tul3utdI1bkZ3Ty1iQoh-af0S-nUx2Ca0unbegQbrtZlZyTlYkMJYJVyjPKKRLRbVyX9VF-PGltJi3KmVUTjjBf_usPPo1th4HHKE_h7t_s_QLe0iXFnNaVHYrfH6IBDDzxFTtusueex7GDCMxb3SpOaGS1qgr_6C_ttjuUf5GFKK2N4Ow6jdpfiGZXcptocUF9qLu4vckm5iK34Dn2zyHg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wang, Hao</creator><creator>Marcišauskas, Simonas</creator><creator>Sánchez, Benjamín J</creator><creator>Domenzain, Iván</creator><creator>Hermansson, Daniel</creator><creator>Agren, Rasmus</creator><creator>Nielsen, Jens</creator><creator>Kerkhoven, Eduard J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>ABBSD</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7475-0136</orcidid><orcidid>https://orcid.org/0000-0002-3593-5792</orcidid><orcidid>https://orcid.org/0000-0002-9955-6003</orcidid><orcidid>https://orcid.org/0000-0001-6093-4110</orcidid><orcidid>https://orcid.org/0000-0003-0770-6383</orcidid><orcidid>https://orcid.org/0000-0002-5322-2040</orcidid></search><sort><creationdate>20181001</creationdate><title>RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor</title><author>Wang, Hao ; Marcišauskas, Simonas ; Sánchez, Benjamín J ; Domenzain, Iván ; Hermansson, Daniel ; Agren, Rasmus ; Nielsen, Jens ; Kerkhoven, Eduard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-1c5cbdc8169f1181a3ea4b0d040f708d2147b16001aedab81efafefe82856b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibiotics</topic><topic>Automation</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Constraint modelling</topic><topic>Databases, Genetic</topic><topic>Engineering</topic><topic>Gems</topic><topic>Gene amplification</topic><topic>Gene Editing</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Genetic</topic><topic>Quality</topic><topic>Reconstruction</topic><topic>Research and Analysis Methods</topic><topic>Secondary metabolites</topic><topic>Software</topic><topic>Streptomyces coelicolor</topic><topic>Streptomyces coelicolor - genetics</topic><topic>Streptomyces coelicolor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Marcišauskas, Simonas</creatorcontrib><creatorcontrib>Sánchez, Benjamín J</creatorcontrib><creatorcontrib>Domenzain, Iván</creatorcontrib><creatorcontrib>Hermansson, Daniel</creatorcontrib><creatorcontrib>Agren, Rasmus</creatorcontrib><creatorcontrib>Nielsen, Jens</creatorcontrib><creatorcontrib>Kerkhoven, Eduard J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Marcišauskas, Simonas</au><au>Sánchez, Benjamín J</au><au>Domenzain, Iván</au><au>Hermansson, Daniel</au><au>Agren, Rasmus</au><au>Nielsen, Jens</au><au>Kerkhoven, Eduard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>14</volume><issue>10</issue><spage>e1006541</spage><epage>e1006541</epage><pages>e1006541-e1006541</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30335785</pmid><doi>10.1371/journal.pcbi.1006541</doi><orcidid>https://orcid.org/0000-0001-7475-0136</orcidid><orcidid>https://orcid.org/0000-0002-3593-5792</orcidid><orcidid>https://orcid.org/0000-0002-9955-6003</orcidid><orcidid>https://orcid.org/0000-0001-6093-4110</orcidid><orcidid>https://orcid.org/0000-0003-0770-6383</orcidid><orcidid>https://orcid.org/0000-0002-5322-2040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-10, Vol.14 (10), p.e1006541-e1006541
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250632626
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Public Library of Science (PLoS)
subjects Antibiotics
Automation
Bioengineering
Bioinformatics
Biologi
Biological Sciences
Biology
Biology and Life Sciences
Biosynthesis
Computational Biology - methods
Computer and Information Sciences
Computer Simulation
Constraint modelling
Databases, Genetic
Engineering
Gems
Gene amplification
Gene Editing
Genome editing
Genomes
Genomics
Metabolic networks
Metabolic Networks and Pathways - genetics
Metabolism
Metabolites
Models, Genetic
Quality
Reconstruction
Research and Analysis Methods
Secondary metabolites
Software
Streptomyces coelicolor
Streptomyces coelicolor - genetics
Streptomyces coelicolor - metabolism
title RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAVEN%202.0:%20A%20versatile%20toolbox%20for%20metabolic%20network%20reconstruction%20and%20a%20case%20study%20on%20Streptomyces%20coelicolor&rft.jtitle=PLoS%20computational%20biology&rft.au=Wang,%20Hao&rft.date=2018-10-01&rft.volume=14&rft.issue=10&rft.spage=e1006541&rft.epage=e1006541&rft.pages=e1006541-e1006541&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006541&rft_dat=%3Cproquest_plos_%3E2250632626%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250632626&rft_id=info:pmid/30335785&rft_doaj_id=oai_doaj_org_article_0a03b54cefb746cc927752738b8b8294&rfr_iscdi=true