Predicting how and when hidden neurons skew measured synaptic interactions

A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-10, Vol.14 (10), p.e1006490-e1006490
Hauptverfasser: Brinkman, Braden A W, Rieke, Fred, Shea-Brown, Eric, Buice, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006490
container_issue 10
container_start_page e1006490
container_title PLoS computational biology
container_volume 14
creator Brinkman, Braden A W
Rieke, Fred
Shea-Brown, Eric
Buice, Michael A
description A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the network. To properly interpret neural data and determine how biological structure gives rise to neural circuit function, we thus need a better understanding of the relationships between measured effective neural properties and the true underlying physiological properties. Here, we focus on how the effective spatiotemporal dynamics of the synaptic interactions between neurons are reshaped by coupling to unobserved neurons. We find that the effective interactions from a pre-synaptic neuron r' to a post-synaptic neuron r can be decomposed into a sum of the true interaction from r' to r plus corrections from every directed path from r' to r through unobserved neurons. Importantly, the resulting formula reveals when the hidden units have-or do not have-major effects on reshaping the interactions among observed neurons. As a particular example of interest, we derive a formula for the impact of hidden units in random networks with "strong" coupling-connection weights that scale with [Formula: see text], where N is the network size, precisely the scaling observed in recent experiments. With this quantitative relationship between measured and true interactions, we can study how network properties shape effective interactions, which properties are relevant for neural computations, and how to manipulate effective interactions.
doi_str_mv 10.1371/journal.pcbi.1006490
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250632388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6dd0ea5eb464b689b0a4f6fea1d7111</doaj_id><sourcerecordid>2250632388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-bec05b2e1b469b62b643342de9b11bd29bad5853bb16ea63d0635c5d34a188fc3</originalsourceid><addsrcrecordid>eNptkktvEzEUhS0EoqXwDxCMxIZNgt-Z2SBVFY-iSrCAtXVt30kcJnawZ4j673HJtGoRK1_Z3zk-176EvGR0ycSKvdumKUcYlntnw5JRqmVHH5FTppRYrIRqH9-rT8izUraU1rLTT8mJoELqTopT8uVbRh_cGOK62aRDA9E3hw3GZhO8r0vEKadYmvITD80OoUyVb8p1hP0YXBPiiBmqvDLPyZMehoIv5vWM_Pj44fvF58XV10-XF-dXC6e4HhcWHVWWI7M1gtXcaimE5B47y5j1vLPgVauEtUwjaOGpFsopLySwtu2dOCOvj777IRUzP0MxnKtKctG2lbg8Ej7B1uxz2EG-NgmC-buR8tpArvEHNL32niIorGmk1W1nKche9wjMrxhj1ev9fNtkd-gdxjHD8MD04UkMG7NOv43mrGtZVw3ezgY5_ZqwjGYXisNhgIhpqrmZoC2tXyoq-uYf9P_dySPlciolY38XhlFzMxq3KnMzGmYejSp7db-RO9HtLIg_e7K4cA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250632388</pqid></control><display><type>article</type><title>Predicting how and when hidden neurons skew measured synaptic interactions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Brinkman, Braden A W ; Rieke, Fred ; Shea-Brown, Eric ; Buice, Michael A</creator><creatorcontrib>Brinkman, Braden A W ; Rieke, Fred ; Shea-Brown, Eric ; Buice, Michael A</creatorcontrib><description>A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the network. To properly interpret neural data and determine how biological structure gives rise to neural circuit function, we thus need a better understanding of the relationships between measured effective neural properties and the true underlying physiological properties. Here, we focus on how the effective spatiotemporal dynamics of the synaptic interactions between neurons are reshaped by coupling to unobserved neurons. We find that the effective interactions from a pre-synaptic neuron r' to a post-synaptic neuron r can be decomposed into a sum of the true interaction from r' to r plus corrections from every directed path from r' to r through unobserved neurons. Importantly, the resulting formula reveals when the hidden units have-or do not have-major effects on reshaping the interactions among observed neurons. As a particular example of interest, we derive a formula for the impact of hidden units in random networks with "strong" coupling-connection weights that scale with [Formula: see text], where N is the network size, precisely the scaling observed in recent experiments. With this quantitative relationship between measured and true interactions, we can study how network properties shape effective interactions, which properties are relevant for neural computations, and how to manipulate effective interactions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006490</identifier><identifier>PMID: 30346943</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Applied mathematics ; Biology ; Biology and Life Sciences ; Biophysics ; Coding ; Computational Biology ; Computer and Information Sciences ; Coupling ; Experiments ; Funding ; Medicine and Health Sciences ; Models, Neurological ; Models, Statistical ; Neural coding ; Neurons ; Neurons - physiology ; Neurosciences ; Phase transitions ; Physiology ; Properties (attributes) ; Scaling ; Social Sciences ; Statistical mechanics ; Synapses - physiology</subject><ispartof>PLoS computational biology, 2018-10, Vol.14 (10), p.e1006490-e1006490</ispartof><rights>2018 Brinkman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Brinkman et al 2018 Brinkman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-bec05b2e1b469b62b643342de9b11bd29bad5853bb16ea63d0635c5d34a188fc3</citedby><cites>FETCH-LOGICAL-c526t-bec05b2e1b469b62b643342de9b11bd29bad5853bb16ea63d0635c5d34a188fc3</cites><orcidid>0000-0002-2572-8861 ; 0000-0002-2196-1498 ; 0000-0002-1052-2609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219819/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219819/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30346943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brinkman, Braden A W</creatorcontrib><creatorcontrib>Rieke, Fred</creatorcontrib><creatorcontrib>Shea-Brown, Eric</creatorcontrib><creatorcontrib>Buice, Michael A</creatorcontrib><title>Predicting how and when hidden neurons skew measured synaptic interactions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the network. To properly interpret neural data and determine how biological structure gives rise to neural circuit function, we thus need a better understanding of the relationships between measured effective neural properties and the true underlying physiological properties. Here, we focus on how the effective spatiotemporal dynamics of the synaptic interactions between neurons are reshaped by coupling to unobserved neurons. We find that the effective interactions from a pre-synaptic neuron r' to a post-synaptic neuron r can be decomposed into a sum of the true interaction from r' to r plus corrections from every directed path from r' to r through unobserved neurons. Importantly, the resulting formula reveals when the hidden units have-or do not have-major effects on reshaping the interactions among observed neurons. As a particular example of interest, we derive a formula for the impact of hidden units in random networks with "strong" coupling-connection weights that scale with [Formula: see text], where N is the network size, precisely the scaling observed in recent experiments. With this quantitative relationship between measured and true interactions, we can study how network properties shape effective interactions, which properties are relevant for neural computations, and how to manipulate effective interactions.</description><subject>Applied mathematics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Coding</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Coupling</subject><subject>Experiments</subject><subject>Funding</subject><subject>Medicine and Health Sciences</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neural coding</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Phase transitions</subject><subject>Physiology</subject><subject>Properties (attributes)</subject><subject>Scaling</subject><subject>Social Sciences</subject><subject>Statistical mechanics</subject><subject>Synapses - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkktvEzEUhS0EoqXwDxCMxIZNgt-Z2SBVFY-iSrCAtXVt30kcJnawZ4j673HJtGoRK1_Z3zk-176EvGR0ycSKvdumKUcYlntnw5JRqmVHH5FTppRYrIRqH9-rT8izUraU1rLTT8mJoELqTopT8uVbRh_cGOK62aRDA9E3hw3GZhO8r0vEKadYmvITD80OoUyVb8p1hP0YXBPiiBmqvDLPyZMehoIv5vWM_Pj44fvF58XV10-XF-dXC6e4HhcWHVWWI7M1gtXcaimE5B47y5j1vLPgVauEtUwjaOGpFsopLySwtu2dOCOvj777IRUzP0MxnKtKctG2lbg8Ej7B1uxz2EG-NgmC-buR8tpArvEHNL32niIorGmk1W1nKche9wjMrxhj1ev9fNtkd-gdxjHD8MD04UkMG7NOv43mrGtZVw3ezgY5_ZqwjGYXisNhgIhpqrmZoC2tXyoq-uYf9P_dySPlciolY38XhlFzMxq3KnMzGmYejSp7db-RO9HtLIg_e7K4cA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Brinkman, Braden A W</creator><creator>Rieke, Fred</creator><creator>Shea-Brown, Eric</creator><creator>Buice, Michael A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2572-8861</orcidid><orcidid>https://orcid.org/0000-0002-2196-1498</orcidid><orcidid>https://orcid.org/0000-0002-1052-2609</orcidid></search><sort><creationdate>20181001</creationdate><title>Predicting how and when hidden neurons skew measured synaptic interactions</title><author>Brinkman, Braden A W ; Rieke, Fred ; Shea-Brown, Eric ; Buice, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-bec05b2e1b469b62b643342de9b11bd29bad5853bb16ea63d0635c5d34a188fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Coding</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Coupling</topic><topic>Experiments</topic><topic>Funding</topic><topic>Medicine and Health Sciences</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neural coding</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Phase transitions</topic><topic>Physiology</topic><topic>Properties (attributes)</topic><topic>Scaling</topic><topic>Social Sciences</topic><topic>Statistical mechanics</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinkman, Braden A W</creatorcontrib><creatorcontrib>Rieke, Fred</creatorcontrib><creatorcontrib>Shea-Brown, Eric</creatorcontrib><creatorcontrib>Buice, Michael A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinkman, Braden A W</au><au>Rieke, Fred</au><au>Shea-Brown, Eric</au><au>Buice, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting how and when hidden neurons skew measured synaptic interactions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>14</volume><issue>10</issue><spage>e1006490</spage><epage>e1006490</epage><pages>e1006490-e1006490</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the network. To properly interpret neural data and determine how biological structure gives rise to neural circuit function, we thus need a better understanding of the relationships between measured effective neural properties and the true underlying physiological properties. Here, we focus on how the effective spatiotemporal dynamics of the synaptic interactions between neurons are reshaped by coupling to unobserved neurons. We find that the effective interactions from a pre-synaptic neuron r' to a post-synaptic neuron r can be decomposed into a sum of the true interaction from r' to r plus corrections from every directed path from r' to r through unobserved neurons. Importantly, the resulting formula reveals when the hidden units have-or do not have-major effects on reshaping the interactions among observed neurons. As a particular example of interest, we derive a formula for the impact of hidden units in random networks with "strong" coupling-connection weights that scale with [Formula: see text], where N is the network size, precisely the scaling observed in recent experiments. With this quantitative relationship between measured and true interactions, we can study how network properties shape effective interactions, which properties are relevant for neural computations, and how to manipulate effective interactions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30346943</pmid><doi>10.1371/journal.pcbi.1006490</doi><orcidid>https://orcid.org/0000-0002-2572-8861</orcidid><orcidid>https://orcid.org/0000-0002-2196-1498</orcidid><orcidid>https://orcid.org/0000-0002-1052-2609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-10, Vol.14 (10), p.e1006490-e1006490
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250632388
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Applied mathematics
Biology
Biology and Life Sciences
Biophysics
Coding
Computational Biology
Computer and Information Sciences
Coupling
Experiments
Funding
Medicine and Health Sciences
Models, Neurological
Models, Statistical
Neural coding
Neurons
Neurons - physiology
Neurosciences
Phase transitions
Physiology
Properties (attributes)
Scaling
Social Sciences
Statistical mechanics
Synapses - physiology
title Predicting how and when hidden neurons skew measured synaptic interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20how%20and%20when%20hidden%20neurons%20skew%20measured%20synaptic%20interactions&rft.jtitle=PLoS%20computational%20biology&rft.au=Brinkman,%20Braden%20A%20W&rft.date=2018-10-01&rft.volume=14&rft.issue=10&rft.spage=e1006490&rft.epage=e1006490&rft.pages=e1006490-e1006490&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006490&rft_dat=%3Cproquest_plos_%3E2250632388%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250632388&rft_id=info:pmid/30346943&rft_doaj_id=oai_doaj_org_article_f6dd0ea5eb464b689b0a4f6fea1d7111&rfr_iscdi=true