Seizure pathways: A model-based investigation

We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-10, Vol.14 (10), p.e1006403-e1006403
Hauptverfasser: Karoly, Philippa J, Kuhlmann, Levin, Soudry, Daniel, Grayden, David B, Cook, Mark J, Freestone, Dean R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006403
container_issue 10
container_start_page e1006403
container_title PLoS computational biology
container_volume 14
creator Karoly, Philippa J
Kuhlmann, Levin
Soudry, Daniel
Grayden, David B
Cook, Mark J
Freestone, Dean R
description We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.
doi_str_mv 10.1371/journal.pcbi.1006403
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250632163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e57bdd7411c4137a58b7635db5f9b35</doaj_id><sourcerecordid>2250632163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ff57d609ca76d335381e546c055297e933c1ba1659b6583f3c98a0dcb5776d503</originalsourceid><addsrcrecordid>eNptUU1v1DAUtBCIli3_AMFKvXDJ8pwX2zEHpKrio1IlDtCz5a9svcrGi50Utb8eL5tWLeLkJ3tmPPOGkDcUVhQF_bCJUxp0v9pZE1YUgDeAz8gxZQwrgax9_mg-Iq9y3gCUUfKX5AgBQUgUx6T64cPdlPxyp8fr3_o2f1yeLbfR-b4yOnu3DMONz2NY6zHE4YS86HSf_ev5XJCrL59_nn-rLr9_vTg_u6wsq_lYdR0TjoO0WnCHyLClnjXcAmO1FF4iWmo05Uwazlrs0MpWg7OGiUJggAvy7qC762NWc9Ks6poBx5pyLIiLA8JFvVG7FLY63aqog_p7EdNa6TQG23tVeyaMc6Kh1DZldZq1RnBkzrBOmuJuQT7Nv01m6531w5h0_0T06csQrtU63ihOpQTY230_C6T4ayrrUtuQre97Pfg4Fd-0ABGg5gV6-g_0_-maA8qmmHPy3YMZCmrf_j1L7dtXc_uF9vZxkAfSfd34B8uhqzs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250632163</pqid></control><display><type>article</type><title>Seizure pathways: A model-based investigation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Karoly, Philippa J ; Kuhlmann, Levin ; Soudry, Daniel ; Grayden, David B ; Cook, Mark J ; Freestone, Dean R</creator><creatorcontrib>Karoly, Philippa J ; Kuhlmann, Levin ; Soudry, Daniel ; Grayden, David B ; Cook, Mark J ; Freestone, Dean R</creatorcontrib><description>We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006403</identifier><identifier>PMID: 30307937</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Biomedical engineering ; Brain ; Computation ; Computational Biology ; Computational neuroscience ; Convulsions &amp; seizures ; Databases, Factual ; Dynamics ; Electrocorticography - methods ; Engineering ; Epilepsy ; Estimates ; Evolution ; Experimental research ; Funding ; Hospitals ; Humans ; Mathematical models ; Medicine and Health Sciences ; Models, Neurological ; Neural networks ; Neurosciences ; Parameters ; Patients ; Physical Sciences ; Research and Analysis Methods ; Seizures ; Seizures - diagnosis ; Seizures - physiopathology ; Signal Processing, Computer-Assisted ; Software</subject><ispartof>PLoS computational biology, 2018-10, Vol.14 (10), p.e1006403-e1006403</ispartof><rights>2018 Karoly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Karoly et al 2018 Karoly et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ff57d609ca76d335381e546c055297e933c1ba1659b6583f3c98a0dcb5776d503</citedby><cites>FETCH-LOGICAL-c526t-ff57d609ca76d335381e546c055297e933c1ba1659b6583f3c98a0dcb5776d503</cites><orcidid>0000-0003-2411-5358 ; 0000-0002-5497-7234 ; 0000-0002-9879-5854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199000/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199000/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30307937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karoly, Philippa J</creatorcontrib><creatorcontrib>Kuhlmann, Levin</creatorcontrib><creatorcontrib>Soudry, Daniel</creatorcontrib><creatorcontrib>Grayden, David B</creatorcontrib><creatorcontrib>Cook, Mark J</creatorcontrib><creatorcontrib>Freestone, Dean R</creatorcontrib><title>Seizure pathways: A model-based investigation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Brain</subject><subject>Computation</subject><subject>Computational Biology</subject><subject>Computational neuroscience</subject><subject>Convulsions &amp; seizures</subject><subject>Databases, Factual</subject><subject>Dynamics</subject><subject>Electrocorticography - methods</subject><subject>Engineering</subject><subject>Epilepsy</subject><subject>Estimates</subject><subject>Evolution</subject><subject>Experimental research</subject><subject>Funding</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Neurological</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Parameters</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Seizures</subject><subject>Seizures - diagnosis</subject><subject>Seizures - physiopathology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1v1DAUtBCIli3_AMFKvXDJ8pwX2zEHpKrio1IlDtCz5a9svcrGi50Utb8eL5tWLeLkJ3tmPPOGkDcUVhQF_bCJUxp0v9pZE1YUgDeAz8gxZQwrgax9_mg-Iq9y3gCUUfKX5AgBQUgUx6T64cPdlPxyp8fr3_o2f1yeLbfR-b4yOnu3DMONz2NY6zHE4YS86HSf_ev5XJCrL59_nn-rLr9_vTg_u6wsq_lYdR0TjoO0WnCHyLClnjXcAmO1FF4iWmo05Uwazlrs0MpWg7OGiUJggAvy7qC762NWc9Ks6poBx5pyLIiLA8JFvVG7FLY63aqog_p7EdNa6TQG23tVeyaMc6Kh1DZldZq1RnBkzrBOmuJuQT7Nv01m6531w5h0_0T06csQrtU63ihOpQTY230_C6T4ayrrUtuQre97Pfg4Fd-0ABGg5gV6-g_0_-maA8qmmHPy3YMZCmrf_j1L7dtXc_uF9vZxkAfSfd34B8uhqzs</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Karoly, Philippa J</creator><creator>Kuhlmann, Levin</creator><creator>Soudry, Daniel</creator><creator>Grayden, David B</creator><creator>Cook, Mark J</creator><creator>Freestone, Dean R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2411-5358</orcidid><orcidid>https://orcid.org/0000-0002-5497-7234</orcidid><orcidid>https://orcid.org/0000-0002-9879-5854</orcidid></search><sort><creationdate>20181001</creationdate><title>Seizure pathways: A model-based investigation</title><author>Karoly, Philippa J ; Kuhlmann, Levin ; Soudry, Daniel ; Grayden, David B ; Cook, Mark J ; Freestone, Dean R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ff57d609ca76d335381e546c055297e933c1ba1659b6583f3c98a0dcb5776d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Brain</topic><topic>Computation</topic><topic>Computational Biology</topic><topic>Computational neuroscience</topic><topic>Convulsions &amp; seizures</topic><topic>Databases, Factual</topic><topic>Dynamics</topic><topic>Electrocorticography - methods</topic><topic>Engineering</topic><topic>Epilepsy</topic><topic>Estimates</topic><topic>Evolution</topic><topic>Experimental research</topic><topic>Funding</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Neurological</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Parameters</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Seizures</topic><topic>Seizures - diagnosis</topic><topic>Seizures - physiopathology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karoly, Philippa J</creatorcontrib><creatorcontrib>Kuhlmann, Levin</creatorcontrib><creatorcontrib>Soudry, Daniel</creatorcontrib><creatorcontrib>Grayden, David B</creatorcontrib><creatorcontrib>Cook, Mark J</creatorcontrib><creatorcontrib>Freestone, Dean R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karoly, Philippa J</au><au>Kuhlmann, Levin</au><au>Soudry, Daniel</au><au>Grayden, David B</au><au>Cook, Mark J</au><au>Freestone, Dean R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seizure pathways: A model-based investigation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>14</volume><issue>10</issue><spage>e1006403</spage><epage>e1006403</epage><pages>e1006403-e1006403</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30307937</pmid><doi>10.1371/journal.pcbi.1006403</doi><orcidid>https://orcid.org/0000-0003-2411-5358</orcidid><orcidid>https://orcid.org/0000-0002-5497-7234</orcidid><orcidid>https://orcid.org/0000-0002-9879-5854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-10, Vol.14 (10), p.e1006403-e1006403
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250632163
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Algorithms
Biology and Life Sciences
Biomedical engineering
Brain
Computation
Computational Biology
Computational neuroscience
Convulsions & seizures
Databases, Factual
Dynamics
Electrocorticography - methods
Engineering
Epilepsy
Estimates
Evolution
Experimental research
Funding
Hospitals
Humans
Mathematical models
Medicine and Health Sciences
Models, Neurological
Neural networks
Neurosciences
Parameters
Patients
Physical Sciences
Research and Analysis Methods
Seizures
Seizures - diagnosis
Seizures - physiopathology
Signal Processing, Computer-Assisted
Software
title Seizure pathways: A model-based investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seizure%20pathways:%20A%20model-based%20investigation&rft.jtitle=PLoS%20computational%20biology&rft.au=Karoly,%20Philippa%20J&rft.date=2018-10-01&rft.volume=14&rft.issue=10&rft.spage=e1006403&rft.epage=e1006403&rft.pages=e1006403-e1006403&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006403&rft_dat=%3Cproquest_plos_%3E2250632163%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250632163&rft_id=info:pmid/30307937&rft_doaj_id=oai_doaj_org_article_2e57bdd7411c4137a58b7635db5f9b35&rfr_iscdi=true