Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR

Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2019-05, Vol.17 (5), p.e3000252-e3000252
Hauptverfasser: Zhang, Xiaoli, Chen, Wei, Gao, Qiong, Yang, Junsheng, Yan, Xueni, Zhao, Han, Su, Lin, Yang, Meimei, Gao, Chenlang, Yao, Yao, Inoki, Ken, Li, Dan, Shao, Rong, Wang, Shiyi, Sahoo, Nirakar, Kudo, Fumitaka, Eguchi, Tadashi, Ruan, Benfang, Xu, Haoxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000252
container_issue 5
container_start_page e3000252
container_title PLoS biology
container_volume 17
creator Zhang, Xiaoli
Chen, Wei
Gao, Qiong
Yang, Junsheng
Yan, Xueni
Zhao, Han
Su, Lin
Yang, Meimei
Gao, Chenlang
Yao, Yao
Inoki, Ken
Li, Dan
Shao, Rong
Wang, Shiyi
Sahoo, Nirakar
Kudo, Fumitaka
Eguchi, Tadashi
Ruan, Benfang
Xu, Haoxing
description Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.
doi_str_mv 10.1371/journal.pbio.3000252
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2249987934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587702524</galeid><doaj_id>oai_doaj_org_article_7572bdcdbb8b4629856919a744d68590</doaj_id><sourcerecordid>A587702524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</originalsourceid><addsrcrecordid>eNqVkl2P1CAUhhujcdfVf2C0iTd6MSNQKHBjstn4McnG0XH0llCgs0wo1NJunH8vdbqbrdkLDQkQeM57OIc3y55DsIQFhW_3Yei8dMu2smFZAAAQQQ-yU0gwWVDGyMM7-5PsSYz7hCCO2OPspIAQIkLAafZ1I1vZHJT1ubadUb075FL19lr2JubuEEMMjXR5M6jgbJuw7eZLrq6k98bF3HptWpMm3-ehzpvtevM0e1RLF82zaT3Lvn94v734tLhcf1xdnF8uFMVlv0C6pFgrowGUdVUTDGiBgMZIV4YqXUCKZFUYhjiBnCgMEQRkBInhnJayOMteHnVbF6KYuhEFQphzRnmBE7E6EjrIvWg728juIIK04s9B6HZCdr1VzghKKKq00lXFKlwizkjJIZcUY10ywkHSejdlG6rGpHf7vpNuJjq_8fZK7MK1KAlinMIk8HoS6MLPwcReNDYq45z0Jgzju1P5HBWcJ_TVX-j91U3UTqYCrK9DyqtGUXFOGKWjH0ZqeQ-VhjaNVcGb2qbzWcCbWUBievOr38khRrH6tvkP9vO_s-sfcxYfWdWFGDtT3_YZAjGa_6YhYjS_mMyfwl7c_aPboBu3F78BpqT99A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249987934</pqid></control><display><type>article</type><title>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Zhang, Xiaoli ; Chen, Wei ; Gao, Qiong ; Yang, Junsheng ; Yan, Xueni ; Zhao, Han ; Su, Lin ; Yang, Meimei ; Gao, Chenlang ; Yao, Yao ; Inoki, Ken ; Li, Dan ; Shao, Rong ; Wang, Shiyi ; Sahoo, Nirakar ; Kudo, Fumitaka ; Eguchi, Tadashi ; Ruan, Benfang ; Xu, Haoxing</creator><creatorcontrib>Zhang, Xiaoli ; Chen, Wei ; Gao, Qiong ; Yang, Junsheng ; Yan, Xueni ; Zhao, Han ; Su, Lin ; Yang, Meimei ; Gao, Chenlang ; Yao, Yao ; Inoki, Ken ; Li, Dan ; Shao, Rong ; Wang, Shiyi ; Sahoo, Nirakar ; Kudo, Fumitaka ; Eguchi, Tadashi ; Ruan, Benfang ; Xu, Haoxing</creatorcontrib><description>Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000252</identifier><identifier>PMID: 31112550</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Autophagy ; Autophagy - drug effects ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Biology and Life Sciences ; Calcium - pharmacology ; Calcium ions ; Calcium release channels ; Cancer ; Cell cycle ; Cell death ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Chen, Wei ; Clinical trials ; Collaboration ; Deactivation ; Developmental biology ; Fibroblasts ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Inactivation ; Internal medicine ; Ion Channel Gating - drug effects ; Ion channels ; Kinases ; Life sciences ; Lysosomes - drug effects ; Lysosomes - metabolism ; Mammals ; Medical research ; Medicine and Health Sciences ; Membranes ; Models, Biological ; Neurodegeneration ; Neuroprotection ; Nuclear transport ; Phagocytosis ; Pharmaceutical sciences ; Pharmacology ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Physiology ; Protein Binding - drug effects ; Protein kinase ; Proteins ; Rapamycin ; Sirolimus - analogs &amp; derivatives ; Sirolimus - chemistry ; Sirolimus - pharmacology ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transient Receptor Potential Channels - metabolism ; Transient receptor potential proteins ; Translocation</subject><ispartof>PLoS biology, 2019-05, Vol.17 (5), p.e3000252-e3000252</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Zhang et al 2019 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</citedby><cites>FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</cites><orcidid>0000-0002-4788-0063 ; 0000-0001-9981-8328 ; 0000-0002-0507-6317 ; 0000-0003-3561-4654 ; 0000-0002-6425-8495 ; 0000-0003-1569-9101 ; 0000-0003-0669-3840 ; 0000-0002-5281-7392 ; 0000-0002-7830-7104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528971/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31112550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Gao, Qiong</creatorcontrib><creatorcontrib>Yang, Junsheng</creatorcontrib><creatorcontrib>Yan, Xueni</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Su, Lin</creatorcontrib><creatorcontrib>Yang, Meimei</creatorcontrib><creatorcontrib>Gao, Chenlang</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Shao, Rong</creatorcontrib><creatorcontrib>Wang, Shiyi</creatorcontrib><creatorcontrib>Sahoo, Nirakar</creatorcontrib><creatorcontrib>Kudo, Fumitaka</creatorcontrib><creatorcontrib>Eguchi, Tadashi</creatorcontrib><creatorcontrib>Ruan, Benfang</creatorcontrib><creatorcontrib>Xu, Haoxing</creatorcontrib><title>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.</description><subject>Aging</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Calcium - pharmacology</subject><subject>Calcium ions</subject><subject>Calcium release channels</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Chen, Wei</subject><subject>Clinical trials</subject><subject>Collaboration</subject><subject>Deactivation</subject><subject>Developmental biology</subject><subject>Fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Internal medicine</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Life sciences</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Mammals</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Neurodegeneration</subject><subject>Neuroprotection</subject><subject>Nuclear transport</subject><subject>Phagocytosis</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein Binding - drug effects</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Sirolimus - analogs &amp; derivatives</subject><subject>Sirolimus - chemistry</subject><subject>Sirolimus - pharmacology</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transient Receptor Potential Channels - metabolism</subject><subject>Transient receptor potential proteins</subject><subject>Translocation</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2P1CAUhhujcdfVf2C0iTd6MSNQKHBjstn4McnG0XH0llCgs0wo1NJunH8vdbqbrdkLDQkQeM57OIc3y55DsIQFhW_3Yei8dMu2smFZAAAQQQ-yU0gwWVDGyMM7-5PsSYz7hCCO2OPspIAQIkLAafZ1I1vZHJT1ubadUb075FL19lr2JubuEEMMjXR5M6jgbJuw7eZLrq6k98bF3HptWpMm3-ehzpvtevM0e1RLF82zaT3Lvn94v734tLhcf1xdnF8uFMVlv0C6pFgrowGUdVUTDGiBgMZIV4YqXUCKZFUYhjiBnCgMEQRkBInhnJayOMteHnVbF6KYuhEFQphzRnmBE7E6EjrIvWg728juIIK04s9B6HZCdr1VzghKKKq00lXFKlwizkjJIZcUY10ywkHSejdlG6rGpHf7vpNuJjq_8fZK7MK1KAlinMIk8HoS6MLPwcReNDYq45z0Jgzju1P5HBWcJ_TVX-j91U3UTqYCrK9DyqtGUXFOGKWjH0ZqeQ-VhjaNVcGb2qbzWcCbWUBievOr38khRrH6tvkP9vO_s-sfcxYfWdWFGDtT3_YZAjGa_6YhYjS_mMyfwl7c_aPboBu3F78BpqT99A</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Zhang, Xiaoli</creator><creator>Chen, Wei</creator><creator>Gao, Qiong</creator><creator>Yang, Junsheng</creator><creator>Yan, Xueni</creator><creator>Zhao, Han</creator><creator>Su, Lin</creator><creator>Yang, Meimei</creator><creator>Gao, Chenlang</creator><creator>Yao, Yao</creator><creator>Inoki, Ken</creator><creator>Li, Dan</creator><creator>Shao, Rong</creator><creator>Wang, Shiyi</creator><creator>Sahoo, Nirakar</creator><creator>Kudo, Fumitaka</creator><creator>Eguchi, Tadashi</creator><creator>Ruan, Benfang</creator><creator>Xu, Haoxing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-4788-0063</orcidid><orcidid>https://orcid.org/0000-0001-9981-8328</orcidid><orcidid>https://orcid.org/0000-0002-0507-6317</orcidid><orcidid>https://orcid.org/0000-0003-3561-4654</orcidid><orcidid>https://orcid.org/0000-0002-6425-8495</orcidid><orcidid>https://orcid.org/0000-0003-1569-9101</orcidid><orcidid>https://orcid.org/0000-0003-0669-3840</orcidid><orcidid>https://orcid.org/0000-0002-5281-7392</orcidid><orcidid>https://orcid.org/0000-0002-7830-7104</orcidid></search><sort><creationdate>20190521</creationdate><title>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</title><author>Zhang, Xiaoli ; Chen, Wei ; Gao, Qiong ; Yang, Junsheng ; Yan, Xueni ; Zhao, Han ; Su, Lin ; Yang, Meimei ; Gao, Chenlang ; Yao, Yao ; Inoki, Ken ; Li, Dan ; Shao, Rong ; Wang, Shiyi ; Sahoo, Nirakar ; Kudo, Fumitaka ; Eguchi, Tadashi ; Ruan, Benfang ; Xu, Haoxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Calcium - pharmacology</topic><topic>Calcium ions</topic><topic>Calcium release channels</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Chen, Wei</topic><topic>Clinical trials</topic><topic>Collaboration</topic><topic>Deactivation</topic><topic>Developmental biology</topic><topic>Fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Internal medicine</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Life sciences</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Mammals</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Neurodegeneration</topic><topic>Neuroprotection</topic><topic>Nuclear transport</topic><topic>Phagocytosis</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein Binding - drug effects</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Sirolimus - analogs &amp; derivatives</topic><topic>Sirolimus - chemistry</topic><topic>Sirolimus - pharmacology</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transient Receptor Potential Channels - metabolism</topic><topic>Transient receptor potential proteins</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Gao, Qiong</creatorcontrib><creatorcontrib>Yang, Junsheng</creatorcontrib><creatorcontrib>Yan, Xueni</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Su, Lin</creatorcontrib><creatorcontrib>Yang, Meimei</creatorcontrib><creatorcontrib>Gao, Chenlang</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Shao, Rong</creatorcontrib><creatorcontrib>Wang, Shiyi</creatorcontrib><creatorcontrib>Sahoo, Nirakar</creatorcontrib><creatorcontrib>Kudo, Fumitaka</creatorcontrib><creatorcontrib>Eguchi, Tadashi</creatorcontrib><creatorcontrib>Ruan, Benfang</creatorcontrib><creatorcontrib>Xu, Haoxing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaoli</au><au>Chen, Wei</au><au>Gao, Qiong</au><au>Yang, Junsheng</au><au>Yan, Xueni</au><au>Zhao, Han</au><au>Su, Lin</au><au>Yang, Meimei</au><au>Gao, Chenlang</au><au>Yao, Yao</au><au>Inoki, Ken</au><au>Li, Dan</au><au>Shao, Rong</au><au>Wang, Shiyi</au><au>Sahoo, Nirakar</au><au>Kudo, Fumitaka</au><au>Eguchi, Tadashi</au><au>Ruan, Benfang</au><au>Xu, Haoxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>17</volume><issue>5</issue><spage>e3000252</spage><epage>e3000252</epage><pages>e3000252-e3000252</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31112550</pmid><doi>10.1371/journal.pbio.3000252</doi><orcidid>https://orcid.org/0000-0002-4788-0063</orcidid><orcidid>https://orcid.org/0000-0001-9981-8328</orcidid><orcidid>https://orcid.org/0000-0002-0507-6317</orcidid><orcidid>https://orcid.org/0000-0003-3561-4654</orcidid><orcidid>https://orcid.org/0000-0002-6425-8495</orcidid><orcidid>https://orcid.org/0000-0003-1569-9101</orcidid><orcidid>https://orcid.org/0000-0003-0669-3840</orcidid><orcidid>https://orcid.org/0000-0002-5281-7392</orcidid><orcidid>https://orcid.org/0000-0002-7830-7104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2019-05, Vol.17 (5), p.e3000252-e3000252
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2249987934
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Aging
Autophagy
Autophagy - drug effects
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Biology and Life Sciences
Calcium - pharmacology
Calcium ions
Calcium release channels
Cancer
Cell cycle
Cell death
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Chen, Wei
Clinical trials
Collaboration
Deactivation
Developmental biology
Fibroblasts
Fibroblasts - drug effects
Fibroblasts - metabolism
HEK293 Cells
HeLa Cells
Humans
Inactivation
Internal medicine
Ion Channel Gating - drug effects
Ion channels
Kinases
Life sciences
Lysosomes - drug effects
Lysosomes - metabolism
Mammals
Medical research
Medicine and Health Sciences
Membranes
Models, Biological
Neurodegeneration
Neuroprotection
Nuclear transport
Phagocytosis
Pharmaceutical sciences
Pharmacology
Phosphorylation
Physical Sciences
Physiological aspects
Physiology
Protein Binding - drug effects
Protein kinase
Proteins
Rapamycin
Sirolimus - analogs & derivatives
Sirolimus - chemistry
Sirolimus - pharmacology
TOR protein
TOR Serine-Threonine Kinases - metabolism
Transient Receptor Potential Channels - metabolism
Transient receptor potential proteins
Translocation
title Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapamycin%20directly%20activates%20lysosomal%20mucolipin%20TRP%20channels%20independent%20of%20mTOR&rft.jtitle=PLoS%20biology&rft.au=Zhang,%20Xiaoli&rft.date=2019-05-21&rft.volume=17&rft.issue=5&rft.spage=e3000252&rft.epage=e3000252&rft.pages=e3000252-e3000252&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000252&rft_dat=%3Cgale_plos_%3EA587702524%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249987934&rft_id=info:pmid/31112550&rft_galeid=A587702524&rft_doaj_id=oai_doaj_org_article_7572bdcdbb8b4629856919a744d68590&rfr_iscdi=true