Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR
Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a c...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2019-05, Vol.17 (5), p.e3000252-e3000252 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3000252 |
---|---|
container_issue | 5 |
container_start_page | e3000252 |
container_title | PLoS biology |
container_volume | 17 |
creator | Zhang, Xiaoli Chen, Wei Gao, Qiong Yang, Junsheng Yan, Xueni Zhao, Han Su, Lin Yang, Meimei Gao, Chenlang Yao, Yao Inoki, Ken Li, Dan Shao, Rong Wang, Shiyi Sahoo, Nirakar Kudo, Fumitaka Eguchi, Tadashi Ruan, Benfang Xu, Haoxing |
description | Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis. |
doi_str_mv | 10.1371/journal.pbio.3000252 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2249987934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587702524</galeid><doaj_id>oai_doaj_org_article_7572bdcdbb8b4629856919a744d68590</doaj_id><sourcerecordid>A587702524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</originalsourceid><addsrcrecordid>eNqVkl2P1CAUhhujcdfVf2C0iTd6MSNQKHBjstn4McnG0XH0llCgs0wo1NJunH8vdbqbrdkLDQkQeM57OIc3y55DsIQFhW_3Yei8dMu2smFZAAAQQQ-yU0gwWVDGyMM7-5PsSYz7hCCO2OPspIAQIkLAafZ1I1vZHJT1ubadUb075FL19lr2JubuEEMMjXR5M6jgbJuw7eZLrq6k98bF3HptWpMm3-ehzpvtevM0e1RLF82zaT3Lvn94v734tLhcf1xdnF8uFMVlv0C6pFgrowGUdVUTDGiBgMZIV4YqXUCKZFUYhjiBnCgMEQRkBInhnJayOMteHnVbF6KYuhEFQphzRnmBE7E6EjrIvWg728juIIK04s9B6HZCdr1VzghKKKq00lXFKlwizkjJIZcUY10ywkHSejdlG6rGpHf7vpNuJjq_8fZK7MK1KAlinMIk8HoS6MLPwcReNDYq45z0Jgzju1P5HBWcJ_TVX-j91U3UTqYCrK9DyqtGUXFOGKWjH0ZqeQ-VhjaNVcGb2qbzWcCbWUBievOr38khRrH6tvkP9vO_s-sfcxYfWdWFGDtT3_YZAjGa_6YhYjS_mMyfwl7c_aPboBu3F78BpqT99A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249987934</pqid></control><display><type>article</type><title>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Zhang, Xiaoli ; Chen, Wei ; Gao, Qiong ; Yang, Junsheng ; Yan, Xueni ; Zhao, Han ; Su, Lin ; Yang, Meimei ; Gao, Chenlang ; Yao, Yao ; Inoki, Ken ; Li, Dan ; Shao, Rong ; Wang, Shiyi ; Sahoo, Nirakar ; Kudo, Fumitaka ; Eguchi, Tadashi ; Ruan, Benfang ; Xu, Haoxing</creator><creatorcontrib>Zhang, Xiaoli ; Chen, Wei ; Gao, Qiong ; Yang, Junsheng ; Yan, Xueni ; Zhao, Han ; Su, Lin ; Yang, Meimei ; Gao, Chenlang ; Yao, Yao ; Inoki, Ken ; Li, Dan ; Shao, Rong ; Wang, Shiyi ; Sahoo, Nirakar ; Kudo, Fumitaka ; Eguchi, Tadashi ; Ruan, Benfang ; Xu, Haoxing</creatorcontrib><description>Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000252</identifier><identifier>PMID: 31112550</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Autophagy ; Autophagy - drug effects ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Biology and Life Sciences ; Calcium - pharmacology ; Calcium ions ; Calcium release channels ; Cancer ; Cell cycle ; Cell death ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Chen, Wei ; Clinical trials ; Collaboration ; Deactivation ; Developmental biology ; Fibroblasts ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Inactivation ; Internal medicine ; Ion Channel Gating - drug effects ; Ion channels ; Kinases ; Life sciences ; Lysosomes - drug effects ; Lysosomes - metabolism ; Mammals ; Medical research ; Medicine and Health Sciences ; Membranes ; Models, Biological ; Neurodegeneration ; Neuroprotection ; Nuclear transport ; Phagocytosis ; Pharmaceutical sciences ; Pharmacology ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Physiology ; Protein Binding - drug effects ; Protein kinase ; Proteins ; Rapamycin ; Sirolimus - analogs & derivatives ; Sirolimus - chemistry ; Sirolimus - pharmacology ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transient Receptor Potential Channels - metabolism ; Transient receptor potential proteins ; Translocation</subject><ispartof>PLoS biology, 2019-05, Vol.17 (5), p.e3000252-e3000252</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Zhang et al 2019 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</citedby><cites>FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</cites><orcidid>0000-0002-4788-0063 ; 0000-0001-9981-8328 ; 0000-0002-0507-6317 ; 0000-0003-3561-4654 ; 0000-0002-6425-8495 ; 0000-0003-1569-9101 ; 0000-0003-0669-3840 ; 0000-0002-5281-7392 ; 0000-0002-7830-7104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528971/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31112550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Gao, Qiong</creatorcontrib><creatorcontrib>Yang, Junsheng</creatorcontrib><creatorcontrib>Yan, Xueni</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Su, Lin</creatorcontrib><creatorcontrib>Yang, Meimei</creatorcontrib><creatorcontrib>Gao, Chenlang</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Shao, Rong</creatorcontrib><creatorcontrib>Wang, Shiyi</creatorcontrib><creatorcontrib>Sahoo, Nirakar</creatorcontrib><creatorcontrib>Kudo, Fumitaka</creatorcontrib><creatorcontrib>Eguchi, Tadashi</creatorcontrib><creatorcontrib>Ruan, Benfang</creatorcontrib><creatorcontrib>Xu, Haoxing</creatorcontrib><title>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.</description><subject>Aging</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Calcium - pharmacology</subject><subject>Calcium ions</subject><subject>Calcium release channels</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Chen, Wei</subject><subject>Clinical trials</subject><subject>Collaboration</subject><subject>Deactivation</subject><subject>Developmental biology</subject><subject>Fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Internal medicine</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Life sciences</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Mammals</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Neurodegeneration</subject><subject>Neuroprotection</subject><subject>Nuclear transport</subject><subject>Phagocytosis</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein Binding - drug effects</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Sirolimus - analogs & derivatives</subject><subject>Sirolimus - chemistry</subject><subject>Sirolimus - pharmacology</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transient Receptor Potential Channels - metabolism</subject><subject>Transient receptor potential proteins</subject><subject>Translocation</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2P1CAUhhujcdfVf2C0iTd6MSNQKHBjstn4McnG0XH0llCgs0wo1NJunH8vdbqbrdkLDQkQeM57OIc3y55DsIQFhW_3Yei8dMu2smFZAAAQQQ-yU0gwWVDGyMM7-5PsSYz7hCCO2OPspIAQIkLAafZ1I1vZHJT1ubadUb075FL19lr2JubuEEMMjXR5M6jgbJuw7eZLrq6k98bF3HptWpMm3-ehzpvtevM0e1RLF82zaT3Lvn94v734tLhcf1xdnF8uFMVlv0C6pFgrowGUdVUTDGiBgMZIV4YqXUCKZFUYhjiBnCgMEQRkBInhnJayOMteHnVbF6KYuhEFQphzRnmBE7E6EjrIvWg728juIIK04s9B6HZCdr1VzghKKKq00lXFKlwizkjJIZcUY10ywkHSejdlG6rGpHf7vpNuJjq_8fZK7MK1KAlinMIk8HoS6MLPwcReNDYq45z0Jgzju1P5HBWcJ_TVX-j91U3UTqYCrK9DyqtGUXFOGKWjH0ZqeQ-VhjaNVcGb2qbzWcCbWUBievOr38khRrH6tvkP9vO_s-sfcxYfWdWFGDtT3_YZAjGa_6YhYjS_mMyfwl7c_aPboBu3F78BpqT99A</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Zhang, Xiaoli</creator><creator>Chen, Wei</creator><creator>Gao, Qiong</creator><creator>Yang, Junsheng</creator><creator>Yan, Xueni</creator><creator>Zhao, Han</creator><creator>Su, Lin</creator><creator>Yang, Meimei</creator><creator>Gao, Chenlang</creator><creator>Yao, Yao</creator><creator>Inoki, Ken</creator><creator>Li, Dan</creator><creator>Shao, Rong</creator><creator>Wang, Shiyi</creator><creator>Sahoo, Nirakar</creator><creator>Kudo, Fumitaka</creator><creator>Eguchi, Tadashi</creator><creator>Ruan, Benfang</creator><creator>Xu, Haoxing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-4788-0063</orcidid><orcidid>https://orcid.org/0000-0001-9981-8328</orcidid><orcidid>https://orcid.org/0000-0002-0507-6317</orcidid><orcidid>https://orcid.org/0000-0003-3561-4654</orcidid><orcidid>https://orcid.org/0000-0002-6425-8495</orcidid><orcidid>https://orcid.org/0000-0003-1569-9101</orcidid><orcidid>https://orcid.org/0000-0003-0669-3840</orcidid><orcidid>https://orcid.org/0000-0002-5281-7392</orcidid><orcidid>https://orcid.org/0000-0002-7830-7104</orcidid></search><sort><creationdate>20190521</creationdate><title>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</title><author>Zhang, Xiaoli ; Chen, Wei ; Gao, Qiong ; Yang, Junsheng ; Yan, Xueni ; Zhao, Han ; Su, Lin ; Yang, Meimei ; Gao, Chenlang ; Yao, Yao ; Inoki, Ken ; Li, Dan ; Shao, Rong ; Wang, Shiyi ; Sahoo, Nirakar ; Kudo, Fumitaka ; Eguchi, Tadashi ; Ruan, Benfang ; Xu, Haoxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c746t-2d674dced01afbf5407320d42dbe7cd3172ab3e8295195c412105fbf55e9976a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Calcium - pharmacology</topic><topic>Calcium ions</topic><topic>Calcium release channels</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Chen, Wei</topic><topic>Clinical trials</topic><topic>Collaboration</topic><topic>Deactivation</topic><topic>Developmental biology</topic><topic>Fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Internal medicine</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Life sciences</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Mammals</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Neurodegeneration</topic><topic>Neuroprotection</topic><topic>Nuclear transport</topic><topic>Phagocytosis</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein Binding - drug effects</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Sirolimus - analogs & derivatives</topic><topic>Sirolimus - chemistry</topic><topic>Sirolimus - pharmacology</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transient Receptor Potential Channels - metabolism</topic><topic>Transient receptor potential proteins</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Gao, Qiong</creatorcontrib><creatorcontrib>Yang, Junsheng</creatorcontrib><creatorcontrib>Yan, Xueni</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Su, Lin</creatorcontrib><creatorcontrib>Yang, Meimei</creatorcontrib><creatorcontrib>Gao, Chenlang</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Shao, Rong</creatorcontrib><creatorcontrib>Wang, Shiyi</creatorcontrib><creatorcontrib>Sahoo, Nirakar</creatorcontrib><creatorcontrib>Kudo, Fumitaka</creatorcontrib><creatorcontrib>Eguchi, Tadashi</creatorcontrib><creatorcontrib>Ruan, Benfang</creatorcontrib><creatorcontrib>Xu, Haoxing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaoli</au><au>Chen, Wei</au><au>Gao, Qiong</au><au>Yang, Junsheng</au><au>Yan, Xueni</au><au>Zhao, Han</au><au>Su, Lin</au><au>Yang, Meimei</au><au>Gao, Chenlang</au><au>Yao, Yao</au><au>Inoki, Ken</au><au>Li, Dan</au><au>Shao, Rong</au><au>Wang, Shiyi</au><au>Sahoo, Nirakar</au><au>Kudo, Fumitaka</au><au>Eguchi, Tadashi</au><au>Ruan, Benfang</au><au>Xu, Haoxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>17</volume><issue>5</issue><spage>e3000252</spage><epage>e3000252</epage><pages>e3000252-e3000252</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31112550</pmid><doi>10.1371/journal.pbio.3000252</doi><orcidid>https://orcid.org/0000-0002-4788-0063</orcidid><orcidid>https://orcid.org/0000-0001-9981-8328</orcidid><orcidid>https://orcid.org/0000-0002-0507-6317</orcidid><orcidid>https://orcid.org/0000-0003-3561-4654</orcidid><orcidid>https://orcid.org/0000-0002-6425-8495</orcidid><orcidid>https://orcid.org/0000-0003-1569-9101</orcidid><orcidid>https://orcid.org/0000-0003-0669-3840</orcidid><orcidid>https://orcid.org/0000-0002-5281-7392</orcidid><orcidid>https://orcid.org/0000-0002-7830-7104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2019-05, Vol.17 (5), p.e3000252-e3000252 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2249987934 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Aging Autophagy Autophagy - drug effects Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Biology and Life Sciences Calcium - pharmacology Calcium ions Calcium release channels Cancer Cell cycle Cell death Cell Nucleus - drug effects Cell Nucleus - metabolism Chen, Wei Clinical trials Collaboration Deactivation Developmental biology Fibroblasts Fibroblasts - drug effects Fibroblasts - metabolism HEK293 Cells HeLa Cells Humans Inactivation Internal medicine Ion Channel Gating - drug effects Ion channels Kinases Life sciences Lysosomes - drug effects Lysosomes - metabolism Mammals Medical research Medicine and Health Sciences Membranes Models, Biological Neurodegeneration Neuroprotection Nuclear transport Phagocytosis Pharmaceutical sciences Pharmacology Phosphorylation Physical Sciences Physiological aspects Physiology Protein Binding - drug effects Protein kinase Proteins Rapamycin Sirolimus - analogs & derivatives Sirolimus - chemistry Sirolimus - pharmacology TOR protein TOR Serine-Threonine Kinases - metabolism Transient Receptor Potential Channels - metabolism Transient receptor potential proteins Translocation |
title | Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapamycin%20directly%20activates%20lysosomal%20mucolipin%20TRP%20channels%20independent%20of%20mTOR&rft.jtitle=PLoS%20biology&rft.au=Zhang,%20Xiaoli&rft.date=2019-05-21&rft.volume=17&rft.issue=5&rft.spage=e3000252&rft.epage=e3000252&rft.pages=e3000252-e3000252&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000252&rft_dat=%3Cgale_plos_%3EA587702524%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249987934&rft_id=info:pmid/31112550&rft_galeid=A587702524&rft_doaj_id=oai_doaj_org_article_7572bdcdbb8b4629856919a744d68590&rfr_iscdi=true |