Lens differentiation is controlled by the balance between PDGF and FGF signaling

How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2019-02, Vol.17 (2), p.e3000133-e3000133
Hauptverfasser: Li, Hongge, Mao, Yingyu, Bouaziz, Michael, Yu, Honglian, Qu, Xiuxia, Wang, Fen, Feng, Gen-Sheng, Shawber, Carrie, Zhang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000133
container_issue 2
container_start_page e3000133
container_title PLoS biology
container_volume 17
creator Li, Hongge
Mao, Yingyu
Bouaziz, Michael
Yu, Honglian
Qu, Xiuxia
Wang, Fen
Feng, Gen-Sheng
Shawber, Carrie
Zhang, Xin
description How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation.
doi_str_mv 10.1371/journal.pbio.3000133
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2249959910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577280354</galeid><doaj_id>oai_doaj_org_article_e53aadeef79f4fda8bd5a2c6a6c8616e</doaj_id><sourcerecordid>A577280354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-9f50d444acdcc0a2076466a1726f8fc6218c8fd153c75bc5a43220c7be1c95d3</originalsourceid><addsrcrecordid>eNqVks1uEzEUhUcIREvhDRCMxKYsEvzvmQ1S1ZISKaIVVGwtj309dTQZp_YE6NvjkGnVoC5AXlzL_u6xfXyK4jVGU0wl_rAMm9jrbrpufJhShBCm9ElxiDnjE1lV_OmD-UHxIqUlQoTUpHpeHFAksUAVOSwuF9Cn0nrnIEI_eD340Jc-lSb0QwxdB7ZsbsvhGspGd7o3ucLwE6AvL8_OZ6XubTnLNfk2X8b37cvimdNdgldjPSquZp-uTj9PFhfn89OTxcRIgYdJ7TiyjDFtrDFIEyQFE0JjSYSrnBEEV6ZyFnNqJG8M14wSgoxsAJuaW3pUvN3JrruQ1OhFUoSwuuZ1jVEm5jvCBr1U6-hXOt6qoL36sxBiq3QcvOlAAadaWwAna8ec1VVjuSZGaGEqgQVkrY_jaZtmBdZkp6Lu9kT3d3p_rdrwQwkquRAkCxyPAjHcbCANauWTgS47CmGT741lzRniAmf03V_o468bqVbnB_jehXyu2YqqEy4lqRDlLFPTR6g8LKx8_mFwPq_vNbzfa9imAH4Nrd6kpObfvv4H--Xf2Yvv-yzbsSaGlCK4e58xUtvo3xmittFXY_Rz25uHf3TfdJd1-hvy5_2m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249959910</pqid></control><display><type>article</type><title>Lens differentiation is controlled by the balance between PDGF and FGF signaling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Hongge ; Mao, Yingyu ; Bouaziz, Michael ; Yu, Honglian ; Qu, Xiuxia ; Wang, Fen ; Feng, Gen-Sheng ; Shawber, Carrie ; Zhang, Xin</creator><contributor>Bronner, Marianne E.</contributor><creatorcontrib>Li, Hongge ; Mao, Yingyu ; Bouaziz, Michael ; Yu, Honglian ; Qu, Xiuxia ; Wang, Fen ; Feng, Gen-Sheng ; Shawber, Carrie ; Zhang, Xin ; Bronner, Marianne E.</creatorcontrib><description>How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000133</identifier><identifier>PMID: 30716082</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; Activation ; Animals ; Apoptosis ; B-cell lymphoma ; Bax protein ; bcl-2 Homologous Antagonist-Killer Protein - genetics ; bcl-2-Associated X Protein - genetics ; Biology ; Biology and Life Sciences ; Cell cycle ; Cell Differentiation ; Cell fate ; Cell growth ; Cell Survival ; Cells (biology) ; Deactivation ; Departments ; Differentiation (biology) ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Fibroblast growth factor receptors ; Fibroblast growth factors ; Fibroblast Growth Factors - metabolism ; Fibroblasts ; Genes ; Growth factor receptors ; Growth factors ; Homology ; Inactivation ; Kinases ; Lens, Crystalline - cytology ; Lens, Crystalline - embryology ; Lens, Crystalline - metabolism ; Lenses ; Ligands ; Lymphocytes B ; Lymphoma ; Mammals ; MAP kinase ; MAP Kinase Signaling System ; Medicine and Health Sciences ; Mice ; Mutation - genetics ; Observations ; Pathology ; Phenotypes ; Phosphatidylinositol 3-Kinases - metabolism ; Physiological aspects ; Platelet-derived growth factor ; Platelet-Derived Growth Factor - metabolism ; Progenitor cells ; Protein Domains ; Protein kinase ; Protein Stability ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Receptor, Platelet-Derived Growth Factor alpha - metabolism ; Receptors ; Receptors, Notch - chemistry ; Receptors, Notch - metabolism ; Rous sarcoma ; Sarcoma ; Signal Transduction ; Signaling ; Substrates ; Tyrosine</subject><ispartof>PLoS biology, 2019-02, Vol.17 (2), p.e3000133-e3000133</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Li et al 2019 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-9f50d444acdcc0a2076466a1726f8fc6218c8fd153c75bc5a43220c7be1c95d3</citedby><cites>FETCH-LOGICAL-c761t-9f50d444acdcc0a2076466a1726f8fc6218c8fd153c75bc5a43220c7be1c95d3</cites><orcidid>0000-0001-5555-0825 ; 0000-0001-5182-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30716082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bronner, Marianne E.</contributor><creatorcontrib>Li, Hongge</creatorcontrib><creatorcontrib>Mao, Yingyu</creatorcontrib><creatorcontrib>Bouaziz, Michael</creatorcontrib><creatorcontrib>Yu, Honglian</creatorcontrib><creatorcontrib>Qu, Xiuxia</creatorcontrib><creatorcontrib>Wang, Fen</creatorcontrib><creatorcontrib>Feng, Gen-Sheng</creatorcontrib><creatorcontrib>Shawber, Carrie</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Lens differentiation is controlled by the balance between PDGF and FGF signaling</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Activation</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>B-cell lymphoma</subject><subject>Bax protein</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - genetics</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell fate</subject><subject>Cell growth</subject><subject>Cell Survival</subject><subject>Cells (biology)</subject><subject>Deactivation</subject><subject>Departments</subject><subject>Differentiation (biology)</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Fibroblast growth factor receptors</subject><subject>Fibroblast growth factors</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Fibroblasts</subject><subject>Genes</subject><subject>Growth factor receptors</subject><subject>Growth factors</subject><subject>Homology</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Lens, Crystalline - cytology</subject><subject>Lens, Crystalline - embryology</subject><subject>Lens, Crystalline - metabolism</subject><subject>Lenses</subject><subject>Ligands</subject><subject>Lymphocytes B</subject><subject>Lymphoma</subject><subject>Mammals</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mutation - genetics</subject><subject>Observations</subject><subject>Pathology</subject><subject>Phenotypes</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Physiological aspects</subject><subject>Platelet-derived growth factor</subject><subject>Platelet-Derived Growth Factor - metabolism</subject><subject>Progenitor cells</subject><subject>Protein Domains</subject><subject>Protein kinase</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Receptor, Platelet-Derived Growth Factor alpha - metabolism</subject><subject>Receptors</subject><subject>Receptors, Notch - chemistry</subject><subject>Receptors, Notch - metabolism</subject><subject>Rous sarcoma</subject><subject>Sarcoma</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Substrates</subject><subject>Tyrosine</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVks1uEzEUhUcIREvhDRCMxKYsEvzvmQ1S1ZISKaIVVGwtj309dTQZp_YE6NvjkGnVoC5AXlzL_u6xfXyK4jVGU0wl_rAMm9jrbrpufJhShBCm9ElxiDnjE1lV_OmD-UHxIqUlQoTUpHpeHFAksUAVOSwuF9Cn0nrnIEI_eD340Jc-lSb0QwxdB7ZsbsvhGspGd7o3ucLwE6AvL8_OZ6XubTnLNfk2X8b37cvimdNdgldjPSquZp-uTj9PFhfn89OTxcRIgYdJ7TiyjDFtrDFIEyQFE0JjSYSrnBEEV6ZyFnNqJG8M14wSgoxsAJuaW3pUvN3JrruQ1OhFUoSwuuZ1jVEm5jvCBr1U6-hXOt6qoL36sxBiq3QcvOlAAadaWwAna8ec1VVjuSZGaGEqgQVkrY_jaZtmBdZkp6Lu9kT3d3p_rdrwQwkquRAkCxyPAjHcbCANauWTgS47CmGT741lzRniAmf03V_o468bqVbnB_jehXyu2YqqEy4lqRDlLFPTR6g8LKx8_mFwPq_vNbzfa9imAH4Nrd6kpObfvv4H--Xf2Yvv-yzbsSaGlCK4e58xUtvo3xmittFXY_Rz25uHf3TfdJd1-hvy5_2m</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Li, Hongge</creator><creator>Mao, Yingyu</creator><creator>Bouaziz, Michael</creator><creator>Yu, Honglian</creator><creator>Qu, Xiuxia</creator><creator>Wang, Fen</creator><creator>Feng, Gen-Sheng</creator><creator>Shawber, Carrie</creator><creator>Zhang, Xin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-5555-0825</orcidid><orcidid>https://orcid.org/0000-0001-5182-7401</orcidid></search><sort><creationdate>20190204</creationdate><title>Lens differentiation is controlled by the balance between PDGF and FGF signaling</title><author>Li, Hongge ; Mao, Yingyu ; Bouaziz, Michael ; Yu, Honglian ; Qu, Xiuxia ; Wang, Fen ; Feng, Gen-Sheng ; Shawber, Carrie ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-9f50d444acdcc0a2076466a1726f8fc6218c8fd153c75bc5a43220c7be1c95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Activation</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>B-cell lymphoma</topic><topic>Bax protein</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - genetics</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell fate</topic><topic>Cell growth</topic><topic>Cell Survival</topic><topic>Cells (biology)</topic><topic>Deactivation</topic><topic>Departments</topic><topic>Differentiation (biology)</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Fibroblast growth factor receptors</topic><topic>Fibroblast growth factors</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Fibroblasts</topic><topic>Genes</topic><topic>Growth factor receptors</topic><topic>Growth factors</topic><topic>Homology</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Lens, Crystalline - cytology</topic><topic>Lens, Crystalline - embryology</topic><topic>Lens, Crystalline - metabolism</topic><topic>Lenses</topic><topic>Ligands</topic><topic>Lymphocytes B</topic><topic>Lymphoma</topic><topic>Mammals</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mutation - genetics</topic><topic>Observations</topic><topic>Pathology</topic><topic>Phenotypes</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Physiological aspects</topic><topic>Platelet-derived growth factor</topic><topic>Platelet-Derived Growth Factor - metabolism</topic><topic>Progenitor cells</topic><topic>Protein Domains</topic><topic>Protein kinase</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Receptor, Platelet-Derived Growth Factor alpha - metabolism</topic><topic>Receptors</topic><topic>Receptors, Notch - chemistry</topic><topic>Receptors, Notch - metabolism</topic><topic>Rous sarcoma</topic><topic>Sarcoma</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Substrates</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongge</creatorcontrib><creatorcontrib>Mao, Yingyu</creatorcontrib><creatorcontrib>Bouaziz, Michael</creatorcontrib><creatorcontrib>Yu, Honglian</creatorcontrib><creatorcontrib>Qu, Xiuxia</creatorcontrib><creatorcontrib>Wang, Fen</creatorcontrib><creatorcontrib>Feng, Gen-Sheng</creatorcontrib><creatorcontrib>Shawber, Carrie</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongge</au><au>Mao, Yingyu</au><au>Bouaziz, Michael</au><au>Yu, Honglian</au><au>Qu, Xiuxia</au><au>Wang, Fen</au><au>Feng, Gen-Sheng</au><au>Shawber, Carrie</au><au>Zhang, Xin</au><au>Bronner, Marianne E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lens differentiation is controlled by the balance between PDGF and FGF signaling</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-02-04</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>e3000133</spage><epage>e3000133</epage><pages>e3000133-e3000133</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30716082</pmid><doi>10.1371/journal.pbio.3000133</doi><orcidid>https://orcid.org/0000-0001-5555-0825</orcidid><orcidid>https://orcid.org/0000-0001-5182-7401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2019-02, Vol.17 (2), p.e3000133-e3000133
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2249959910
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 1-Phosphatidylinositol 3-kinase
Activation
Animals
Apoptosis
B-cell lymphoma
Bax protein
bcl-2 Homologous Antagonist-Killer Protein - genetics
bcl-2-Associated X Protein - genetics
Biology
Biology and Life Sciences
Cell cycle
Cell Differentiation
Cell fate
Cell growth
Cell Survival
Cells (biology)
Deactivation
Departments
Differentiation (biology)
Epithelial Cells - cytology
Epithelial Cells - metabolism
Fibroblast growth factor receptors
Fibroblast growth factors
Fibroblast Growth Factors - metabolism
Fibroblasts
Genes
Growth factor receptors
Growth factors
Homology
Inactivation
Kinases
Lens, Crystalline - cytology
Lens, Crystalline - embryology
Lens, Crystalline - metabolism
Lenses
Ligands
Lymphocytes B
Lymphoma
Mammals
MAP kinase
MAP Kinase Signaling System
Medicine and Health Sciences
Mice
Mutation - genetics
Observations
Pathology
Phenotypes
Phosphatidylinositol 3-Kinases - metabolism
Physiological aspects
Platelet-derived growth factor
Platelet-Derived Growth Factor - metabolism
Progenitor cells
Protein Domains
Protein kinase
Protein Stability
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Receptor, Platelet-Derived Growth Factor alpha - metabolism
Receptors
Receptors, Notch - chemistry
Receptors, Notch - metabolism
Rous sarcoma
Sarcoma
Signal Transduction
Signaling
Substrates
Tyrosine
title Lens differentiation is controlled by the balance between PDGF and FGF signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lens%20differentiation%20is%20controlled%20by%20the%20balance%20between%20PDGF%20and%20FGF%20signaling&rft.jtitle=PLoS%20biology&rft.au=Li,%20Hongge&rft.date=2019-02-04&rft.volume=17&rft.issue=2&rft.spage=e3000133&rft.epage=e3000133&rft.pages=e3000133-e3000133&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000133&rft_dat=%3Cgale_plos_%3EA577280354%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249959910&rft_id=info:pmid/30716082&rft_galeid=A577280354&rft_doaj_id=oai_doaj_org_article_e53aadeef79f4fda8bd5a2c6a6c8616e&rfr_iscdi=true