The brown algal mode of tip growth: Keeping stress under control
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although t...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2019-01, Vol.17 (1), p.e2005258-e2005258 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2005258 |
---|---|
container_issue | 1 |
container_start_page | e2005258 |
container_title | PLoS biology |
container_volume | 17 |
creator | Rabillé, Hervé Billoud, Bernard Tesson, Benoit Le Panse, Sophie Rolland, Élodie Charrier, Bénédicte |
description | Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties. |
doi_str_mv | 10.1371/journal.pbio.2005258 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2249959844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571884035</galeid><doaj_id>oai_doaj_org_article_d5bc56bcd067470393d20339bfd001af</doaj_id><sourcerecordid>A571884035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c795t-fbea3b168d02825b5895419b0bf30789bbf8284813df028c669a8c76aa7a72623</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoh_wDxBE4tIedvFnbPeAWFVAV6yoBIWrZTt21qtsvNhJgX-Pl02rbtUDyIdYk-d9JzOTKYoXEEwhZvDNKgyxU-10o32YIgAoovxRcQgpoRPGOX18535QHKW0AgAhgfjT4gCDigAB8GHx7mppSx3Dz65UbaPach1qWwZX9n5TNjneL8_KT9ZufNeUqY82pXLoahtLE7o-hvZZ8cSpNtnn4_O4-Pbh_dX5xWRx-XF-PltMDBO0nzhtFdaw4jVAHFFNuaAECg20w4BxobXjiBMOce0yYapKKG5YpRRTDFUIHxevdr6bNiQ5Fp8kQkQIKjghmZjviDqoldxEv1bxtwzKy7-BEBupYu9Na2VNtaGVNjWoGGEAC1wjgLHQrgYAKpe93o7ZBr22tbG5VtXume6_6fxSNuFaVpgwJHA2ON0ZLO_JLmYLuY0BBDmuKLiGmT0Zk8XwY7Cpl2ufjG1b1dkw5BohE5hWmPKMvr6HPtyJkcoDtdJ3LuRvNFtTOaMMck4AppmaPkDlU9u1z9O1zuf4nuB0T7D9A-yvvlFDSnL-9ct_sJ__nb38vs-SHWtiSClad9tcCOR2L24aIrd7Ice9yLKXd-d5K7pZBPwHXkYErQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249959844</pqid></control><display><type>article</type><title>The brown algal mode of tip growth: Keeping stress under control</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Rabillé, Hervé ; Billoud, Bernard ; Tesson, Benoit ; Le Panse, Sophie ; Rolland, Élodie ; Charrier, Bénédicte</creator><creatorcontrib>Rabillé, Hervé ; Billoud, Bernard ; Tesson, Benoit ; Le Panse, Sophie ; Rolland, Élodie ; Charrier, Bénédicte</creatorcontrib><description>Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2005258</identifier><identifier>PMID: 30640903</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algae ; Biology and Life Sciences ; Cell Shape ; Cell Wall ; Cell walls ; Cellular Biology ; Colonization ; Computer simulation ; Curvature ; Data collection ; Development Biology ; Ectocarpus ; Excretion ; Fertilization ; Fluorescence ; Fluorescence recovery after photobleaching ; Fluorescence Recovery After Photobleaching - methods ; Hyphae ; Indoleacetic Acids - metabolism ; Life Sciences ; Loosening ; Mechanical properties ; Models, Biological ; Morphogenesis ; Phaeophyceae - growth & development ; Photobleaching ; Physical Sciences ; Plant Roots - growth & development ; Pollen ; Pollen tubes ; Predation ; Research and Analysis Methods ; Root hairs ; Scanning electron microscopy ; Subcellular Processes ; Symbiosis ; Tubes ; Turgor ; Wall thickness</subject><ispartof>PLoS biology, 2019-01, Vol.17 (1), p.e2005258-e2005258</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Rabillé et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Rabillé et al 2019 Rabillé et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c795t-fbea3b168d02825b5895419b0bf30789bbf8284813df028c669a8c76aa7a72623</citedby><cites>FETCH-LOGICAL-c795t-fbea3b168d02825b5895419b0bf30789bbf8284813df028c669a8c76aa7a72623</cites><orcidid>0000-0001-5721-1640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30640903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02183650$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabillé, Hervé</creatorcontrib><creatorcontrib>Billoud, Bernard</creatorcontrib><creatorcontrib>Tesson, Benoit</creatorcontrib><creatorcontrib>Le Panse, Sophie</creatorcontrib><creatorcontrib>Rolland, Élodie</creatorcontrib><creatorcontrib>Charrier, Bénédicte</creatorcontrib><title>The brown algal mode of tip growth: Keeping stress under control</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.</description><subject>Algae</subject><subject>Biology and Life Sciences</subject><subject>Cell Shape</subject><subject>Cell Wall</subject><subject>Cell walls</subject><subject>Cellular Biology</subject><subject>Colonization</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Data collection</subject><subject>Development Biology</subject><subject>Ectocarpus</subject><subject>Excretion</subject><subject>Fertilization</subject><subject>Fluorescence</subject><subject>Fluorescence recovery after photobleaching</subject><subject>Fluorescence Recovery After Photobleaching - methods</subject><subject>Hyphae</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Life Sciences</subject><subject>Loosening</subject><subject>Mechanical properties</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Phaeophyceae - growth & development</subject><subject>Photobleaching</subject><subject>Physical Sciences</subject><subject>Plant Roots - growth & development</subject><subject>Pollen</subject><subject>Pollen tubes</subject><subject>Predation</subject><subject>Research and Analysis Methods</subject><subject>Root hairs</subject><subject>Scanning electron microscopy</subject><subject>Subcellular Processes</subject><subject>Symbiosis</subject><subject>Tubes</subject><subject>Turgor</subject><subject>Wall thickness</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoh_wDxBE4tIedvFnbPeAWFVAV6yoBIWrZTt21qtsvNhJgX-Pl02rbtUDyIdYk-d9JzOTKYoXEEwhZvDNKgyxU-10o32YIgAoovxRcQgpoRPGOX18535QHKW0AgAhgfjT4gCDigAB8GHx7mppSx3Dz65UbaPach1qWwZX9n5TNjneL8_KT9ZufNeUqY82pXLoahtLE7o-hvZZ8cSpNtnn4_O4-Pbh_dX5xWRx-XF-PltMDBO0nzhtFdaw4jVAHFFNuaAECg20w4BxobXjiBMOce0yYapKKG5YpRRTDFUIHxevdr6bNiQ5Fp8kQkQIKjghmZjviDqoldxEv1bxtwzKy7-BEBupYu9Na2VNtaGVNjWoGGEAC1wjgLHQrgYAKpe93o7ZBr22tbG5VtXume6_6fxSNuFaVpgwJHA2ON0ZLO_JLmYLuY0BBDmuKLiGmT0Zk8XwY7Cpl2ufjG1b1dkw5BohE5hWmPKMvr6HPtyJkcoDtdJ3LuRvNFtTOaMMck4AppmaPkDlU9u1z9O1zuf4nuB0T7D9A-yvvlFDSnL-9ct_sJ__nb38vs-SHWtiSClad9tcCOR2L24aIrd7Ice9yLKXd-d5K7pZBPwHXkYErQ</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Rabillé, Hervé</creator><creator>Billoud, Bernard</creator><creator>Tesson, Benoit</creator><creator>Le Panse, Sophie</creator><creator>Rolland, Élodie</creator><creator>Charrier, Bénédicte</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-5721-1640</orcidid></search><sort><creationdate>20190114</creationdate><title>The brown algal mode of tip growth: Keeping stress under control</title><author>Rabillé, Hervé ; Billoud, Bernard ; Tesson, Benoit ; Le Panse, Sophie ; Rolland, Élodie ; Charrier, Bénédicte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c795t-fbea3b168d02825b5895419b0bf30789bbf8284813df028c669a8c76aa7a72623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algae</topic><topic>Biology and Life Sciences</topic><topic>Cell Shape</topic><topic>Cell Wall</topic><topic>Cell walls</topic><topic>Cellular Biology</topic><topic>Colonization</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Data collection</topic><topic>Development Biology</topic><topic>Ectocarpus</topic><topic>Excretion</topic><topic>Fertilization</topic><topic>Fluorescence</topic><topic>Fluorescence recovery after photobleaching</topic><topic>Fluorescence Recovery After Photobleaching - methods</topic><topic>Hyphae</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Life Sciences</topic><topic>Loosening</topic><topic>Mechanical properties</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Phaeophyceae - growth & development</topic><topic>Photobleaching</topic><topic>Physical Sciences</topic><topic>Plant Roots - growth & development</topic><topic>Pollen</topic><topic>Pollen tubes</topic><topic>Predation</topic><topic>Research and Analysis Methods</topic><topic>Root hairs</topic><topic>Scanning electron microscopy</topic><topic>Subcellular Processes</topic><topic>Symbiosis</topic><topic>Tubes</topic><topic>Turgor</topic><topic>Wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabillé, Hervé</creatorcontrib><creatorcontrib>Billoud, Bernard</creatorcontrib><creatorcontrib>Tesson, Benoit</creatorcontrib><creatorcontrib>Le Panse, Sophie</creatorcontrib><creatorcontrib>Rolland, Élodie</creatorcontrib><creatorcontrib>Charrier, Bénédicte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabillé, Hervé</au><au>Billoud, Bernard</au><au>Tesson, Benoit</au><au>Le Panse, Sophie</au><au>Rolland, Élodie</au><au>Charrier, Bénédicte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The brown algal mode of tip growth: Keeping stress under control</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-01-14</date><risdate>2019</risdate><volume>17</volume><issue>1</issue><spage>e2005258</spage><epage>e2005258</epage><pages>e2005258-e2005258</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30640903</pmid><doi>10.1371/journal.pbio.2005258</doi><orcidid>https://orcid.org/0000-0001-5721-1640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2019-01, Vol.17 (1), p.e2005258-e2005258 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2249959844 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Algae Biology and Life Sciences Cell Shape Cell Wall Cell walls Cellular Biology Colonization Computer simulation Curvature Data collection Development Biology Ectocarpus Excretion Fertilization Fluorescence Fluorescence recovery after photobleaching Fluorescence Recovery After Photobleaching - methods Hyphae Indoleacetic Acids - metabolism Life Sciences Loosening Mechanical properties Models, Biological Morphogenesis Phaeophyceae - growth & development Photobleaching Physical Sciences Plant Roots - growth & development Pollen Pollen tubes Predation Research and Analysis Methods Root hairs Scanning electron microscopy Subcellular Processes Symbiosis Tubes Turgor Wall thickness |
title | The brown algal mode of tip growth: Keeping stress under control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20brown%20algal%20mode%20of%20tip%20growth:%20Keeping%20stress%20under%20control&rft.jtitle=PLoS%20biology&rft.au=Rabill%C3%A9,%20Herv%C3%A9&rft.date=2019-01-14&rft.volume=17&rft.issue=1&rft.spage=e2005258&rft.epage=e2005258&rft.pages=e2005258-e2005258&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2005258&rft_dat=%3Cgale_plos_%3EA571884035%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249959844&rft_id=info:pmid/30640903&rft_galeid=A571884035&rft_doaj_id=oai_doaj_org_article_d5bc56bcd067470393d20339bfd001af&rfr_iscdi=true |