H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells

During the aging process, bone marrow mesenchymal stem cells (BMSCs) exhibit declined osteogenesis accompanied by excess adipogenesis, which will lead to osteoporosis. Here, we report that the H3 lysine 36 trimethylation (H3K36me3), catalyzed by histone methyltransferase SET-domain-containing 2 (SET...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2018-11, Vol.16 (11), p.e2006522-e2006522
Hauptverfasser: Wang, Lijun, Niu, Ningning, Li, Li, Shao, Rui, Ouyang, Huiling, Zou, Weiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2006522
container_issue 11
container_start_page e2006522
container_title PLoS biology
container_volume 16
creator Wang, Lijun
Niu, Ningning
Li, Li
Shao, Rui
Ouyang, Huiling
Zou, Weiguo
description During the aging process, bone marrow mesenchymal stem cells (BMSCs) exhibit declined osteogenesis accompanied by excess adipogenesis, which will lead to osteoporosis. Here, we report that the H3 lysine 36 trimethylation (H3K36me3), catalyzed by histone methyltransferase SET-domain-containing 2 (SETD2), regulates lineage commitment of BMSCs. Deletion of Setd2 in mouse bone marrow mesenchymal stem cells (mBMSCs), through conditional Cre expression driven by Prx1 promoter, resulted in bone loss and marrow adiposity. Loss of Setd2 in BMSCs in vitro facilitated differentiation propensity to adipocytes rather than to osteoblasts. Through conjoint analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified a SETD2 functional target gene, Lbp, on which H3K36me3 was enriched, and its expression was affected by Setd2 deficiency. Furthermore, overexpression of lipopolysaccharide-binding protein (LBP) could partially rescue the lack of osteogenesis and enhanced adipogenesis resulting from the absence of Setd2 in BMSCs. Further mechanistic studies demonstrated that the trimethylation level of H3K36 could regulate Lbp transcriptional initiation and elongation. These findings suggest that H3K36me3 mediated by SETD2 could regulate the cell fate of mesenchymal stem cells (MSCs) in vitro and in vivo, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream LBP may represent a potential therapeutic way for new treatment in metabolic bone diseases, such as osteoporosis.
doi_str_mv 10.1371/journal.pbio.2006522
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2249948435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A564080944</galeid><doaj_id>oai_doaj_org_article_668644bf505c42488db2d76eea329f45</doaj_id><sourcerecordid>A564080944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-a90124f97a9f5411db293d773304f354489f042163cbc7ff91f811835103d6383</originalsourceid><addsrcrecordid>eNqVk8tu1DAUhiMEoqXwBggssYHFDL7H3lSqSqEjKirRwtZyEnvGoyQebAeYt8fppFUHdQHywkf2d36fi09RvERwjkiJ3q_9EHrdzjeV83MMIWcYPyoOEaNsVgrBHt-zD4pnMa4hxFhi8bQ4IJBmU8jDQp2Tz4SDFFxn0mrb6uR8DzrTOJ1MA6otuDq7_oBBMMshX5oI0soAmy3gLah8b0CnQ_C_sk80fb3adroFMZkO1KZt4_PiidVtNC-m_aj49vHs-vR8dnH5aXF6cjGrS47STEuIMLWy1NIyilBTYUmasiQ5UksYpULaHDPipK7q0lqJrEBIEIYgaTgR5Kh4vdPdtD6qqTZRYUylpIISlonFjmi8XqtNTliHrfLaqZsDH5ZKh-Tq1ijOBae0sgyymmIqRA6nKbkxmmBp6ah1PL02VLlWtelT0O2e6P5N71Zq6X8qjgmRSGaBt5NA8D8GE5PqXBwLpnvjhxw3IoTmLt_E_eYv9OHsJmqpcwKutz6_W4-i6oRxCgWUlGZq_gCVV2M6V-dmWpfP9xze7TlkJpnfaamHGNXi6ut_sF_-nb38vs_SHVsHH2Mw9q7OCKpxFG4LosZRUNMoZLdX93t053T798kfzCEAnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249948435</pqid></control><display><type>article</type><title>H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Lijun ; Niu, Ningning ; Li, Li ; Shao, Rui ; Ouyang, Huiling ; Zou, Weiguo</creator><creatorcontrib>Wang, Lijun ; Niu, Ningning ; Li, Li ; Shao, Rui ; Ouyang, Huiling ; Zou, Weiguo</creatorcontrib><description>During the aging process, bone marrow mesenchymal stem cells (BMSCs) exhibit declined osteogenesis accompanied by excess adipogenesis, which will lead to osteoporosis. Here, we report that the H3 lysine 36 trimethylation (H3K36me3), catalyzed by histone methyltransferase SET-domain-containing 2 (SETD2), regulates lineage commitment of BMSCs. Deletion of Setd2 in mouse bone marrow mesenchymal stem cells (mBMSCs), through conditional Cre expression driven by Prx1 promoter, resulted in bone loss and marrow adiposity. Loss of Setd2 in BMSCs in vitro facilitated differentiation propensity to adipocytes rather than to osteoblasts. Through conjoint analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified a SETD2 functional target gene, Lbp, on which H3K36me3 was enriched, and its expression was affected by Setd2 deficiency. Furthermore, overexpression of lipopolysaccharide-binding protein (LBP) could partially rescue the lack of osteogenesis and enhanced adipogenesis resulting from the absence of Setd2 in BMSCs. Further mechanistic studies demonstrated that the trimethylation level of H3K36 could regulate Lbp transcriptional initiation and elongation. These findings suggest that H3K36me3 mediated by SETD2 could regulate the cell fate of mesenchymal stem cells (MSCs) in vitro and in vivo, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream LBP may represent a potential therapeutic way for new treatment in metabolic bone diseases, such as osteoporosis.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2006522</identifier><identifier>PMID: 30422989</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipocytes ; Adipogenesis ; Adipose tissue ; Aging ; Biochemistry ; Biocompatibility ; Bioinformatics ; Biology ; Biology and Life Sciences ; Biomedical materials ; Bone diseases ; Bone loss ; Bone marrow ; Cell fate ; Chromatin ; Clonal deletion ; Elongation ; Epigenetics ; Funding ; Gene expression ; Gene sequencing ; Histone methyltransferase ; Immunoprecipitation ; Laboratories ; Lipopolysaccharide-binding protein ; Lipopolysaccharides ; Lysine ; Medical research ; Medical treatment ; Medicine and Health Sciences ; Mesenchymal stem cells ; Mesenchyme ; Methylation ; Observations ; Osteoblastogenesis ; Osteoblasts ; Osteogenesis ; Osteoporosis ; Phosphotransferases ; Physiological aspects ; Proteins ; Ribonucleic acid ; RNA ; Stem cell transplantation ; Stem cells ; Target recognition ; Transcription elongation</subject><ispartof>PLoS biology, 2018-11, Vol.16 (11), p.e2006522-e2006522</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Wang et al 2018 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-a90124f97a9f5411db293d773304f354489f042163cbc7ff91f811835103d6383</citedby><cites>FETCH-LOGICAL-c761t-a90124f97a9f5411db293d773304f354489f042163cbc7ff91f811835103d6383</cites><orcidid>0000-0002-3686-6098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30422989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Niu, Ningning</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Shao, Rui</creatorcontrib><creatorcontrib>Ouyang, Huiling</creatorcontrib><creatorcontrib>Zou, Weiguo</creatorcontrib><title>H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>During the aging process, bone marrow mesenchymal stem cells (BMSCs) exhibit declined osteogenesis accompanied by excess adipogenesis, which will lead to osteoporosis. Here, we report that the H3 lysine 36 trimethylation (H3K36me3), catalyzed by histone methyltransferase SET-domain-containing 2 (SETD2), regulates lineage commitment of BMSCs. Deletion of Setd2 in mouse bone marrow mesenchymal stem cells (mBMSCs), through conditional Cre expression driven by Prx1 promoter, resulted in bone loss and marrow adiposity. Loss of Setd2 in BMSCs in vitro facilitated differentiation propensity to adipocytes rather than to osteoblasts. Through conjoint analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified a SETD2 functional target gene, Lbp, on which H3K36me3 was enriched, and its expression was affected by Setd2 deficiency. Furthermore, overexpression of lipopolysaccharide-binding protein (LBP) could partially rescue the lack of osteogenesis and enhanced adipogenesis resulting from the absence of Setd2 in BMSCs. Further mechanistic studies demonstrated that the trimethylation level of H3K36 could regulate Lbp transcriptional initiation and elongation. These findings suggest that H3K36me3 mediated by SETD2 could regulate the cell fate of mesenchymal stem cells (MSCs) in vitro and in vivo, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream LBP may represent a potential therapeutic way for new treatment in metabolic bone diseases, such as osteoporosis.</description><subject>Adipocytes</subject><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Aging</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone diseases</subject><subject>Bone loss</subject><subject>Bone marrow</subject><subject>Cell fate</subject><subject>Chromatin</subject><subject>Clonal deletion</subject><subject>Elongation</subject><subject>Epigenetics</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Histone methyltransferase</subject><subject>Immunoprecipitation</subject><subject>Laboratories</subject><subject>Lipopolysaccharide-binding protein</subject><subject>Lipopolysaccharides</subject><subject>Lysine</subject><subject>Medical research</subject><subject>Medical treatment</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Methylation</subject><subject>Observations</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Phosphotransferases</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Target recognition</subject><subject>Transcription elongation</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8tu1DAUhiMEoqXwBggssYHFDL7H3lSqSqEjKirRwtZyEnvGoyQebAeYt8fppFUHdQHywkf2d36fi09RvERwjkiJ3q_9EHrdzjeV83MMIWcYPyoOEaNsVgrBHt-zD4pnMa4hxFhi8bQ4IJBmU8jDQp2Tz4SDFFxn0mrb6uR8DzrTOJ1MA6otuDq7_oBBMMshX5oI0soAmy3gLah8b0CnQ_C_sk80fb3adroFMZkO1KZt4_PiidVtNC-m_aj49vHs-vR8dnH5aXF6cjGrS47STEuIMLWy1NIyilBTYUmasiQ5UksYpULaHDPipK7q0lqJrEBIEIYgaTgR5Kh4vdPdtD6qqTZRYUylpIISlonFjmi8XqtNTliHrfLaqZsDH5ZKh-Tq1ijOBae0sgyymmIqRA6nKbkxmmBp6ah1PL02VLlWtelT0O2e6P5N71Zq6X8qjgmRSGaBt5NA8D8GE5PqXBwLpnvjhxw3IoTmLt_E_eYv9OHsJmqpcwKutz6_W4-i6oRxCgWUlGZq_gCVV2M6V-dmWpfP9xze7TlkJpnfaamHGNXi6ut_sF_-nb38vs_SHVsHH2Mw9q7OCKpxFG4LosZRUNMoZLdX93t053T798kfzCEAnw</recordid><startdate>20181113</startdate><enddate>20181113</enddate><creator>Wang, Lijun</creator><creator>Niu, Ningning</creator><creator>Li, Li</creator><creator>Shao, Rui</creator><creator>Ouyang, Huiling</creator><creator>Zou, Weiguo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-3686-6098</orcidid></search><sort><creationdate>20181113</creationdate><title>H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells</title><author>Wang, Lijun ; Niu, Ningning ; Li, Li ; Shao, Rui ; Ouyang, Huiling ; Zou, Weiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-a90124f97a9f5411db293d773304f354489f042163cbc7ff91f811835103d6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adipocytes</topic><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Aging</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone diseases</topic><topic>Bone loss</topic><topic>Bone marrow</topic><topic>Cell fate</topic><topic>Chromatin</topic><topic>Clonal deletion</topic><topic>Elongation</topic><topic>Epigenetics</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Histone methyltransferase</topic><topic>Immunoprecipitation</topic><topic>Laboratories</topic><topic>Lipopolysaccharide-binding protein</topic><topic>Lipopolysaccharides</topic><topic>Lysine</topic><topic>Medical research</topic><topic>Medical treatment</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Methylation</topic><topic>Observations</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Phosphotransferases</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Target recognition</topic><topic>Transcription elongation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Niu, Ningning</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Shao, Rui</creatorcontrib><creatorcontrib>Ouyang, Huiling</creatorcontrib><creatorcontrib>Zou, Weiguo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Niu, Ningning</au><au>Li, Li</au><au>Shao, Rui</au><au>Ouyang, Huiling</au><au>Zou, Weiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-11-13</date><risdate>2018</risdate><volume>16</volume><issue>11</issue><spage>e2006522</spage><epage>e2006522</epage><pages>e2006522-e2006522</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>During the aging process, bone marrow mesenchymal stem cells (BMSCs) exhibit declined osteogenesis accompanied by excess adipogenesis, which will lead to osteoporosis. Here, we report that the H3 lysine 36 trimethylation (H3K36me3), catalyzed by histone methyltransferase SET-domain-containing 2 (SETD2), regulates lineage commitment of BMSCs. Deletion of Setd2 in mouse bone marrow mesenchymal stem cells (mBMSCs), through conditional Cre expression driven by Prx1 promoter, resulted in bone loss and marrow adiposity. Loss of Setd2 in BMSCs in vitro facilitated differentiation propensity to adipocytes rather than to osteoblasts. Through conjoint analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified a SETD2 functional target gene, Lbp, on which H3K36me3 was enriched, and its expression was affected by Setd2 deficiency. Furthermore, overexpression of lipopolysaccharide-binding protein (LBP) could partially rescue the lack of osteogenesis and enhanced adipogenesis resulting from the absence of Setd2 in BMSCs. Further mechanistic studies demonstrated that the trimethylation level of H3K36 could regulate Lbp transcriptional initiation and elongation. These findings suggest that H3K36me3 mediated by SETD2 could regulate the cell fate of mesenchymal stem cells (MSCs) in vitro and in vivo, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream LBP may represent a potential therapeutic way for new treatment in metabolic bone diseases, such as osteoporosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30422989</pmid><doi>10.1371/journal.pbio.2006522</doi><orcidid>https://orcid.org/0000-0002-3686-6098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2018-11, Vol.16 (11), p.e2006522-e2006522
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2249948435
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adipocytes
Adipogenesis
Adipose tissue
Aging
Biochemistry
Biocompatibility
Bioinformatics
Biology
Biology and Life Sciences
Biomedical materials
Bone diseases
Bone loss
Bone marrow
Cell fate
Chromatin
Clonal deletion
Elongation
Epigenetics
Funding
Gene expression
Gene sequencing
Histone methyltransferase
Immunoprecipitation
Laboratories
Lipopolysaccharide-binding protein
Lipopolysaccharides
Lysine
Medical research
Medical treatment
Medicine and Health Sciences
Mesenchymal stem cells
Mesenchyme
Methylation
Observations
Osteoblastogenesis
Osteoblasts
Osteogenesis
Osteoporosis
Phosphotransferases
Physiological aspects
Proteins
Ribonucleic acid
RNA
Stem cell transplantation
Stem cells
Target recognition
Transcription elongation
title H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H3K36%20trimethylation%20mediated%20by%20SETD2%20regulates%20the%20fate%20of%20bone%20marrow%20mesenchymal%20stem%20cells&rft.jtitle=PLoS%20biology&rft.au=Wang,%20Lijun&rft.date=2018-11-13&rft.volume=16&rft.issue=11&rft.spage=e2006522&rft.epage=e2006522&rft.pages=e2006522-e2006522&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2006522&rft_dat=%3Cgale_plos_%3EA564080944%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249948435&rft_id=info:pmid/30422989&rft_galeid=A564080944&rft_doaj_id=oai_doaj_org_article_668644bf505c42488db2d76eea329f45&rfr_iscdi=true