A prediction model on rockburst intensity grade based on variable weight and matter-element extension

Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-06, Vol.14 (6), p.e0218525-e0218525
Hauptverfasser: Chen, Jianhong, Chen, Yi, Yang, Shan, Zhong, Xudong, Han, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0218525
container_issue 6
container_start_page e0218525
container_title PloS one
container_volume 14
creator Chen, Jianhong
Chen, Yi
Yang, Shan
Zhong, Xudong
Han, Xu
description Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optimize the weights of prediction indexes. Matter-element extension theory and grade variable method are used to calculate the grade variable interval corresponding to the classification standard of rockburst intensity grade. The rockburst intensity grade of Engineering Rock Mass is predicted by rock burst intensity level variable and the interval. Finally, the model is tested by predicting the rockburst intensity grades of worldwide several projects. The prediction results are compared with the actual rockburst intensity grades and the prediction results of other models. The results indicate that, after using variable weight theory and grade variable method, the correct rate of prediction results of matter-element extension model is improved, and the safety of the prediction results is also enhanced. This study provides a new way to predict rock burst in underground engineering.
doi_str_mv 10.1371/journal.pone.0218525
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2247707621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590974263</galeid><doaj_id>oai_doaj_org_article_6d91d2fbd9a34fc4a160f9a043e10985</doaj_id><sourcerecordid>A590974263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a715t-253bf23e6c5fc633ef38568c469a3414cf612b4c602bd2b6cf5930295d15355e3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgujFjPlo0vZGGBY_BhYW_LoNaXLaydg2Y5Ku7r83nekuU9kL6UVD8rzvyTk5J0meY7TCNMfvdnZwvWxXe9vDChFcMMIeJOe4pGTJCaIPT9ZnyRPvdwgxWnD-ODmjmGSEIHKewDrdO9BGBWP7tLMa2jQunFU_q8H5kJo-QO9NuEkbJzWklfSgR-RaOiOrFtLfYJptSGWv006GAG4JLXTQhxT-HLS2f5o8qmXr4dn0XyTfP374dvF5eXn1aXOxvlzKHLOwJIxWNaHAFasVpxRqWjBeqIyXkmY4UzXHpMoUR6TSpOKqZiVFpGQaM8oY0EXy8ui7b60XU4W8ICTLc5RzgiOxORLayp3YO9NJdyOsNOKwYV0jpAtGtSC4LrEmdaXH4LXKJOaoLiXKKGBUFix6vZ-iDVUHWsWUnWxnpvOT3mxFY68FZ2XG8WjwZjJw9tcAPojOeAVtK3uww-HeBS0Qw-O9X_2D3p_dRDUyJmD62sa4ajQVa1aiMs9ILOsiWd1DxU9DZ1Rsp9rE_Zng7UwQmRDftpGD92Lz9cv_s1c_5uzrE3YLsg1bb9th7EU_B7MjqJz13kF9V2SMxDgNt9UQ4zSIaRqi7MXpA92Jbtuf_gVqtwSN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247707621</pqid></control><display><type>article</type><title>A prediction model on rockburst intensity grade based on variable weight and matter-element extension</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Jianhong ; Chen, Yi ; Yang, Shan ; Zhong, Xudong ; Han, Xu</creator><contributor>Li, Yang</contributor><creatorcontrib>Chen, Jianhong ; Chen, Yi ; Yang, Shan ; Zhong, Xudong ; Han, Xu ; Li, Yang</creatorcontrib><description>Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optimize the weights of prediction indexes. Matter-element extension theory and grade variable method are used to calculate the grade variable interval corresponding to the classification standard of rockburst intensity grade. The rockburst intensity grade of Engineering Rock Mass is predicted by rock burst intensity level variable and the interval. Finally, the model is tested by predicting the rockburst intensity grades of worldwide several projects. The prediction results are compared with the actual rockburst intensity grades and the prediction results of other models. The results indicate that, after using variable weight theory and grade variable method, the correct rate of prediction results of matter-element extension model is improved, and the safety of the prediction results is also enhanced. This study provides a new way to predict rock burst in underground engineering.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218525</identifier><identifier>PMID: 31242202</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Biology and Life Sciences ; Compressive Strength ; Computer and Information Sciences ; Discriminant analysis ; Energy ; Engineering ; Engineering and Technology ; Geological Phenomena ; Methods ; Mining ; Model testing ; Models, Theoretical ; Neural networks ; Novels ; People and Places ; Physical Sciences ; Prediction models ; Research and Analysis Methods ; Rock masses ; Rockbursts ; Rocks ; Science Policy ; Soil mechanics ; Weight</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0218525-e0218525</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Chen et al 2019 Chen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a715t-253bf23e6c5fc633ef38568c469a3414cf612b4c602bd2b6cf5930295d15355e3</citedby><cites>FETCH-LOGICAL-a715t-253bf23e6c5fc633ef38568c469a3414cf612b4c602bd2b6cf5930295d15355e3</cites><orcidid>0000-0002-8249-0183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594615/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594615/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31242202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Li, Yang</contributor><creatorcontrib>Chen, Jianhong</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Yang, Shan</creatorcontrib><creatorcontrib>Zhong, Xudong</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><title>A prediction model on rockburst intensity grade based on variable weight and matter-element extension</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optimize the weights of prediction indexes. Matter-element extension theory and grade variable method are used to calculate the grade variable interval corresponding to the classification standard of rockburst intensity grade. The rockburst intensity grade of Engineering Rock Mass is predicted by rock burst intensity level variable and the interval. Finally, the model is tested by predicting the rockburst intensity grades of worldwide several projects. The prediction results are compared with the actual rockburst intensity grades and the prediction results of other models. The results indicate that, after using variable weight theory and grade variable method, the correct rate of prediction results of matter-element extension model is improved, and the safety of the prediction results is also enhanced. This study provides a new way to predict rock burst in underground engineering.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Compressive Strength</subject><subject>Computer and Information Sciences</subject><subject>Discriminant analysis</subject><subject>Energy</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Geological Phenomena</subject><subject>Methods</subject><subject>Mining</subject><subject>Model testing</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Novels</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Rock masses</subject><subject>Rockbursts</subject><subject>Rocks</subject><subject>Science Policy</subject><subject>Soil mechanics</subject><subject>Weight</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgujFjPlo0vZGGBY_BhYW_LoNaXLaydg2Y5Ku7r83nekuU9kL6UVD8rzvyTk5J0meY7TCNMfvdnZwvWxXe9vDChFcMMIeJOe4pGTJCaIPT9ZnyRPvdwgxWnD-ODmjmGSEIHKewDrdO9BGBWP7tLMa2jQunFU_q8H5kJo-QO9NuEkbJzWklfSgR-RaOiOrFtLfYJptSGWv006GAG4JLXTQhxT-HLS2f5o8qmXr4dn0XyTfP374dvF5eXn1aXOxvlzKHLOwJIxWNaHAFasVpxRqWjBeqIyXkmY4UzXHpMoUR6TSpOKqZiVFpGQaM8oY0EXy8ui7b60XU4W8ICTLc5RzgiOxORLayp3YO9NJdyOsNOKwYV0jpAtGtSC4LrEmdaXH4LXKJOaoLiXKKGBUFix6vZ-iDVUHWsWUnWxnpvOT3mxFY68FZ2XG8WjwZjJw9tcAPojOeAVtK3uww-HeBS0Qw-O9X_2D3p_dRDUyJmD62sa4ajQVa1aiMs9ILOsiWd1DxU9DZ1Rsp9rE_Zng7UwQmRDftpGD92Lz9cv_s1c_5uzrE3YLsg1bb9th7EU_B7MjqJz13kF9V2SMxDgNt9UQ4zSIaRqi7MXpA92Jbtuf_gVqtwSN</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Chen, Jianhong</creator><creator>Chen, Yi</creator><creator>Yang, Shan</creator><creator>Zhong, Xudong</creator><creator>Han, Xu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8249-0183</orcidid></search><sort><creationdate>20190626</creationdate><title>A prediction model on rockburst intensity grade based on variable weight and matter-element extension</title><author>Chen, Jianhong ; Chen, Yi ; Yang, Shan ; Zhong, Xudong ; Han, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a715t-253bf23e6c5fc633ef38568c469a3414cf612b4c602bd2b6cf5930295d15355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Compressive Strength</topic><topic>Computer and Information Sciences</topic><topic>Discriminant analysis</topic><topic>Energy</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Geological Phenomena</topic><topic>Methods</topic><topic>Mining</topic><topic>Model testing</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Novels</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Rock masses</topic><topic>Rockbursts</topic><topic>Rocks</topic><topic>Science Policy</topic><topic>Soil mechanics</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianhong</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Yang, Shan</creatorcontrib><creatorcontrib>Zhong, Xudong</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianhong</au><au>Chen, Yi</au><au>Yang, Shan</au><au>Zhong, Xudong</au><au>Han, Xu</au><au>Li, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prediction model on rockburst intensity grade based on variable weight and matter-element extension</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0218525</spage><epage>e0218525</epage><pages>e0218525-e0218525</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optimize the weights of prediction indexes. Matter-element extension theory and grade variable method are used to calculate the grade variable interval corresponding to the classification standard of rockburst intensity grade. The rockburst intensity grade of Engineering Rock Mass is predicted by rock burst intensity level variable and the interval. Finally, the model is tested by predicting the rockburst intensity grades of worldwide several projects. The prediction results are compared with the actual rockburst intensity grades and the prediction results of other models. The results indicate that, after using variable weight theory and grade variable method, the correct rate of prediction results of matter-element extension model is improved, and the safety of the prediction results is also enhanced. This study provides a new way to predict rock burst in underground engineering.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31242202</pmid><doi>10.1371/journal.pone.0218525</doi><tpages>e0218525</tpages><orcidid>https://orcid.org/0000-0002-8249-0183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-06, Vol.14 (6), p.e0218525-e0218525
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2247707621
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Biology and Life Sciences
Compressive Strength
Computer and Information Sciences
Discriminant analysis
Energy
Engineering
Engineering and Technology
Geological Phenomena
Methods
Mining
Model testing
Models, Theoretical
Neural networks
Novels
People and Places
Physical Sciences
Prediction models
Research and Analysis Methods
Rock masses
Rockbursts
Rocks
Science Policy
Soil mechanics
Weight
title A prediction model on rockburst intensity grade based on variable weight and matter-element extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prediction%20model%20on%20rockburst%20intensity%20grade%20based%20on%20variable%20weight%20and%20matter-element%20extension&rft.jtitle=PloS%20one&rft.au=Chen,%20Jianhong&rft.date=2019-06-26&rft.volume=14&rft.issue=6&rft.spage=e0218525&rft.epage=e0218525&rft.pages=e0218525-e0218525&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218525&rft_dat=%3Cgale_plos_%3EA590974263%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247707621&rft_id=info:pmid/31242202&rft_galeid=A590974263&rft_doaj_id=oai_doaj_org_article_6d91d2fbd9a34fc4a160f9a043e10985&rfr_iscdi=true