Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model
Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from a...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-06, Vol.14 (6), p.e0218626-e0218626 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0218626 |
---|---|
container_issue | 6 |
container_start_page | e0218626 |
container_title | PloS one |
container_volume | 14 |
creator | Song, Zhanguo Guo, Yanyong Wu, Yao Ma, Jing |
description | Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy. |
doi_str_mv | 10.1371/journal.pone.0218626 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2247705741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590974297</galeid><doaj_id>oai_doaj_org_article_15d7766fbdfd4ffc9ce96eb67509de64</doaj_id><sourcerecordid>A590974297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3ef458fadfb5f51d2520f12370e84d232dcffe1c6868b67e19febcada18f7c373</originalsourceid><addsrcrecordid>eNqNk1Fv0zAUhSMEYmPwDxBYQkLwkBI7iZO8IFUDRqVNk1bg1XLt69aVE3e2M7EXfjvOmk0N2gPKQyL7O-f6nvgmyWuczXBe4U9b27uOm9nOdjDLCK4poU-SY9zkJKUky58efB8lL7zfZlmZ15Q-T45yTApCCD1O_iw31oU0gGtRcFwpLZDfAUi0cyC1CNp2qO8kOCS1UuCgC0jywJGwxsB-P-gWkO6iyQ03HvVed2vE0XJ-tbiYp8svZxdoc7tyemLaWgnmZfJMRQm8Gt8nyc9vX3-cfk_PL88Wp_PzVNCGhDQHVZS14lKtSlViSUqSKUzyKoO6kCQnUsSzYUFrWq9oBbhRsBJcclyrSuRVfpK83fvujPVsjM4zQoqqysqqwJFY7Alp-ZbtnG65u2WWa3a3YN2acRe0MMBwKauKUrWSShZKiUZAQyHWLbNGAi2i1-exWr9qQYqYmeNmYjrd6fSGre0No2VTUDIYfBgNnL3uwQfWai_AGN6B7e_OXcfm67KJ6Lt_0Me7G6k1jw3oTtlYVwymbF42WVMVpBlSmj1CxUdCq0W8Z0rH9Yng40QQmQC_w5r33rPF8ur_2ctfU_b9AbsBbsLGW9MPF8dPwWIPCme9d6AeQsYZG8bkPg02jAkbxyTK3hz-oAfR_VzkfwEvUw99</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247705741</pqid></control><display><type>article</type><title>Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Zhanguo ; Guo, Yanyong ; Wu, Yao ; Ma, Jing</creator><contributor>Tang, Jinjun</contributor><creatorcontrib>Song, Zhanguo ; Guo, Yanyong ; Wu, Yao ; Ma, Jing ; Tang, Jinjun</creatorcontrib><description>Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218626</identifier><identifier>PMID: 31242226</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alberta ; Analysis ; Artificial neural networks ; Biology and Life Sciences ; Cities ; Computer and Information Sciences ; Data Collection ; Engineering and Technology ; Highways ; Humans ; Intelligent transportation systems ; Intervals ; Linear Models ; Machine Learning ; Models, Statistical ; Motor Vehicles - statistics & numerical data ; Neural networks ; Neural Networks, Computer ; Performance prediction ; Physical Sciences ; Prediction models ; Regression Analysis ; Regression models ; Research and Analysis Methods ; Root-mean-square errors ; Seasons ; Support Vector Machine ; Support vector machines ; Time Factors ; Traffic congestion ; Traffic control ; Traffic engineering ; Traffic flow ; Traffic models ; Traffic speed ; Transportation - statistics & numerical data</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0218626-e0218626</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Song et al 2019 Song et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3ef458fadfb5f51d2520f12370e84d232dcffe1c6868b67e19febcada18f7c373</citedby><cites>FETCH-LOGICAL-c692t-3ef458fadfb5f51d2520f12370e84d232dcffe1c6868b67e19febcada18f7c373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31242226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tang, Jinjun</contributor><creatorcontrib>Song, Zhanguo</creatorcontrib><creatorcontrib>Guo, Yanyong</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><title>Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy.</description><subject>Alberta</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Cities</subject><subject>Computer and Information Sciences</subject><subject>Data Collection</subject><subject>Engineering and Technology</subject><subject>Highways</subject><subject>Humans</subject><subject>Intelligent transportation systems</subject><subject>Intervals</subject><subject>Linear Models</subject><subject>Machine Learning</subject><subject>Models, Statistical</subject><subject>Motor Vehicles - statistics & numerical data</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Regression Analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Root-mean-square errors</subject><subject>Seasons</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Time Factors</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Traffic models</subject><subject>Traffic speed</subject><subject>Transportation - statistics & numerical data</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAUhSMEYmPwDxBYQkLwkBI7iZO8IFUDRqVNk1bg1XLt69aVE3e2M7EXfjvOmk0N2gPKQyL7O-f6nvgmyWuczXBe4U9b27uOm9nOdjDLCK4poU-SY9zkJKUky58efB8lL7zfZlmZ15Q-T45yTApCCD1O_iw31oU0gGtRcFwpLZDfAUi0cyC1CNp2qO8kOCS1UuCgC0jywJGwxsB-P-gWkO6iyQ03HvVed2vE0XJ-tbiYp8svZxdoc7tyemLaWgnmZfJMRQm8Gt8nyc9vX3-cfk_PL88Wp_PzVNCGhDQHVZS14lKtSlViSUqSKUzyKoO6kCQnUsSzYUFrWq9oBbhRsBJcclyrSuRVfpK83fvujPVsjM4zQoqqysqqwJFY7Alp-ZbtnG65u2WWa3a3YN2acRe0MMBwKauKUrWSShZKiUZAQyHWLbNGAi2i1-exWr9qQYqYmeNmYjrd6fSGre0No2VTUDIYfBgNnL3uwQfWai_AGN6B7e_OXcfm67KJ6Lt_0Me7G6k1jw3oTtlYVwymbF42WVMVpBlSmj1CxUdCq0W8Z0rH9Yng40QQmQC_w5r33rPF8ur_2ctfU_b9AbsBbsLGW9MPF8dPwWIPCme9d6AeQsYZG8bkPg02jAkbxyTK3hz-oAfR_VzkfwEvUw99</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Song, Zhanguo</creator><creator>Guo, Yanyong</creator><creator>Wu, Yao</creator><creator>Ma, Jing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190626</creationdate><title>Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model</title><author>Song, Zhanguo ; Guo, Yanyong ; Wu, Yao ; Ma, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3ef458fadfb5f51d2520f12370e84d232dcffe1c6868b67e19febcada18f7c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alberta</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Cities</topic><topic>Computer and Information Sciences</topic><topic>Data Collection</topic><topic>Engineering and Technology</topic><topic>Highways</topic><topic>Humans</topic><topic>Intelligent transportation systems</topic><topic>Intervals</topic><topic>Linear Models</topic><topic>Machine Learning</topic><topic>Models, Statistical</topic><topic>Motor Vehicles - statistics & numerical data</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Regression Analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Root-mean-square errors</topic><topic>Seasons</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Time Factors</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Traffic models</topic><topic>Traffic speed</topic><topic>Transportation - statistics & numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhanguo</creatorcontrib><creatorcontrib>Guo, Yanyong</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zhanguo</au><au>Guo, Yanyong</au><au>Wu, Yao</au><au>Ma, Jing</au><au>Tang, Jinjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0218626</spage><epage>e0218626</epage><pages>e0218626-e0218626</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31242226</pmid><doi>10.1371/journal.pone.0218626</doi><tpages>e0218626</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-06, Vol.14 (6), p.e0218626-e0218626 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2247705741 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alberta Analysis Artificial neural networks Biology and Life Sciences Cities Computer and Information Sciences Data Collection Engineering and Technology Highways Humans Intelligent transportation systems Intervals Linear Models Machine Learning Models, Statistical Motor Vehicles - statistics & numerical data Neural networks Neural Networks, Computer Performance prediction Physical Sciences Prediction models Regression Analysis Regression models Research and Analysis Methods Root-mean-square errors Seasons Support Vector Machine Support vector machines Time Factors Traffic congestion Traffic control Traffic engineering Traffic flow Traffic models Traffic speed Transportation - statistics & numerical data |
title | Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20traffic%20speed%20prediction%20under%20different%20data%20collection%20time%20intervals%20using%20a%20SARIMA-SDGM%20hybrid%20prediction%20model&rft.jtitle=PloS%20one&rft.au=Song,%20Zhanguo&rft.date=2019-06-26&rft.volume=14&rft.issue=6&rft.spage=e0218626&rft.epage=e0218626&rft.pages=e0218626-e0218626&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218626&rft_dat=%3Cgale_plos_%3EA590974297%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247705741&rft_id=info:pmid/31242226&rft_galeid=A590974297&rft_doaj_id=oai_doaj_org_article_15d7766fbdfd4ffc9ce96eb67509de64&rfr_iscdi=true |