Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships
A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performan...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-06, Vol.14 (6), p.e0218747-e0218747 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0218747 |
---|---|
container_issue | 6 |
container_start_page | e0218747 |
container_title | PloS one |
container_volume | 14 |
creator | Marco de Lima, Bruno Cappa, Eduardo P Silva-Junior, Orzenil B Garcia, Carla Mansfield, Shawn D Grattapaglia, Dario |
description | A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids. |
doi_str_mv | 10.1371/journal.pone.0218747 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2246223055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590572635</galeid><doaj_id>oai_doaj_org_article_95e790425fc44a0bb31a395d6efab333</doaj_id><sourcerecordid>A590572635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5e2e664aad873a1dfa1f5dc76a1fa41743913b252a950dff6a0b4907af01e8683</originalsourceid><addsrcrecordid>eNqNk89u1DAQxiMEomXhDRBYRUJwyOI_ibO5IFVVgUoVBQpcrUkySVxl7WA7LftGPCbe7rbqoh5IDrbs33zfeOxJkueMzpko2LsLOzkDw3y0BueUs0WRFQ-SfVYKnkpOxcM7873kifcXlOZiIeXjZE8wLkQuxX7y5-sEJugAQV8i6dBg0DUZwcESAzpPWutI5-xV6AmYhlxZ25DR2RFd0OiJNuR4qmFYjWHy5GBytnOR0_6A9KvK6YZMXpuOGASXatM6cBgFejQ2rMb1zlo1-tolple6QXL--UtagY-UwyGmZY3v9eifJo9aGDw-246z5MeH4-9Hn9LTs48nR4enaS1LHtIcOUqZATSLQgBrWmBt3tSFjCNkrMhEyUTFcw5lTpu2lUCrrKQFtJThQi7ELHm50R0H69W2yF5xnknOBc3zSJxsiMbChRqdXoJbKQtaXS9Y1ymIxakHVGWORUkznrd1lkWnSjAQZd5IbKES8Zsl77duU7XEpkYTHAw7ors7Rveqs5dK5iVdMBkF3mwFnP01oQ9qqX2NwwAG7bTJO2aQCRbRV_-g959uS3UQDxBvzEbfei2qDqNnXnAp1tT8Hir-DS51HV9kq-P6TsDbnYDIBPwdOpi8Vyfn3_6fPfu5y76-w_YIQ-i9Habrd7MLZhuwdtZ7h-1tkRlV64a6qYZaN5TaNlQMe3H3gm6DbjpI_AXkNB75</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246223055</pqid></control><display><type>article</type><title>Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Marco de Lima, Bruno ; Cappa, Eduardo P ; Silva-Junior, Orzenil B ; Garcia, Carla ; Mansfield, Shawn D ; Grattapaglia, Dario</creator><creatorcontrib>Marco de Lima, Bruno ; Cappa, Eduardo P ; Silva-Junior, Orzenil B ; Garcia, Carla ; Mansfield, Shawn D ; Grattapaglia, Dario</creatorcontrib><description>A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218747</identifier><identifier>PMID: 31233563</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Biotechnology ; Brazil ; Breeding ; Calibration ; Cell walls ; Cellulose ; Cellulose fibers ; Cellulose pulp ; Chemical properties ; Cloning ; Computer and Information Sciences ; Correlation ; Density ; Eucalyptus ; Eucalyptus - chemistry ; Eucalyptus - genetics ; Eucalyptus - growth & development ; Forestry ; Genetic control ; Genetic diversity ; Genetic relationship ; Genetic research ; Genome, Plant ; Genomes ; Genomics ; Genotype ; Heritability ; Hybridization, Genetic ; Hybrids ; I.R. radiation ; Infrared spectra ; Infrared spectroscopy ; Lignin ; Markers ; Mathematical models ; Models, Genetic ; Near infrared radiation ; Near infrared spectroscopy ; Offspring ; Organic chemicals ; Organic chemistry ; Parameter estimation ; Phenotype ; Phenotyping ; Physical Sciences ; Plant Breeding - methods ; Polymorphism, Single Nucleotide ; Polysaccharides ; Progeny ; Pulp ; Quantitative genetics ; Quantitative Trait, Heritable ; Research and Analysis Methods ; Single-nucleotide polymorphism ; Species Specificity ; Spectroscopy ; Spectroscopy, Near-Infrared ; Tree growth ; Trees ; Trees - chemistry ; Trees - genetics ; Trees - growth & development ; Wood ; Wood - chemistry ; Wood - genetics ; Wood - growth & development</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0218747-e0218747</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Marco de Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Marco de Lima et al 2019 Marco de Lima et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5e2e664aad873a1dfa1f5dc76a1fa41743913b252a950dff6a0b4907af01e8683</citedby><cites>FETCH-LOGICAL-c692t-5e2e664aad873a1dfa1f5dc76a1fa41743913b252a950dff6a0b4907af01e8683</cites><orcidid>0000-0002-6234-2263 ; 0000-0002-0050-970X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590816/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590816/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31233563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marco de Lima, Bruno</creatorcontrib><creatorcontrib>Cappa, Eduardo P</creatorcontrib><creatorcontrib>Silva-Junior, Orzenil B</creatorcontrib><creatorcontrib>Garcia, Carla</creatorcontrib><creatorcontrib>Mansfield, Shawn D</creatorcontrib><creatorcontrib>Grattapaglia, Dario</creatorcontrib><title>Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids.</description><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Brazil</subject><subject>Breeding</subject><subject>Calibration</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Cellulose pulp</subject><subject>Chemical properties</subject><subject>Cloning</subject><subject>Computer and Information Sciences</subject><subject>Correlation</subject><subject>Density</subject><subject>Eucalyptus</subject><subject>Eucalyptus - chemistry</subject><subject>Eucalyptus - genetics</subject><subject>Eucalyptus - growth & development</subject><subject>Forestry</subject><subject>Genetic control</subject><subject>Genetic diversity</subject><subject>Genetic relationship</subject><subject>Genetic research</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Heritability</subject><subject>Hybridization, Genetic</subject><subject>Hybrids</subject><subject>I.R. radiation</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Lignin</subject><subject>Markers</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Near infrared radiation</subject><subject>Near infrared spectroscopy</subject><subject>Offspring</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>Physical Sciences</subject><subject>Plant Breeding - methods</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Polysaccharides</subject><subject>Progeny</subject><subject>Pulp</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait, Heritable</subject><subject>Research and Analysis Methods</subject><subject>Single-nucleotide polymorphism</subject><subject>Species Specificity</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Tree growth</subject><subject>Trees</subject><subject>Trees - chemistry</subject><subject>Trees - genetics</subject><subject>Trees - growth & development</subject><subject>Wood</subject><subject>Wood - chemistry</subject><subject>Wood - genetics</subject><subject>Wood - growth & development</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk89u1DAQxiMEomXhDRBYRUJwyOI_ibO5IFVVgUoVBQpcrUkySVxl7WA7LftGPCbe7rbqoh5IDrbs33zfeOxJkueMzpko2LsLOzkDw3y0BueUs0WRFQ-SfVYKnkpOxcM7873kifcXlOZiIeXjZE8wLkQuxX7y5-sEJugAQV8i6dBg0DUZwcESAzpPWutI5-xV6AmYhlxZ25DR2RFd0OiJNuR4qmFYjWHy5GBytnOR0_6A9KvK6YZMXpuOGASXatM6cBgFejQ2rMb1zlo1-tolple6QXL--UtagY-UwyGmZY3v9eifJo9aGDw-246z5MeH4-9Hn9LTs48nR4enaS1LHtIcOUqZATSLQgBrWmBt3tSFjCNkrMhEyUTFcw5lTpu2lUCrrKQFtJThQi7ELHm50R0H69W2yF5xnknOBc3zSJxsiMbChRqdXoJbKQtaXS9Y1ymIxakHVGWORUkznrd1lkWnSjAQZd5IbKES8Zsl77duU7XEpkYTHAw7ors7Rveqs5dK5iVdMBkF3mwFnP01oQ9qqX2NwwAG7bTJO2aQCRbRV_-g959uS3UQDxBvzEbfei2qDqNnXnAp1tT8Hir-DS51HV9kq-P6TsDbnYDIBPwdOpi8Vyfn3_6fPfu5y76-w_YIQ-i9Habrd7MLZhuwdtZ7h-1tkRlV64a6qYZaN5TaNlQMe3H3gm6DbjpI_AXkNB75</recordid><startdate>20190624</startdate><enddate>20190624</enddate><creator>Marco de Lima, Bruno</creator><creator>Cappa, Eduardo P</creator><creator>Silva-Junior, Orzenil B</creator><creator>Garcia, Carla</creator><creator>Mansfield, Shawn D</creator><creator>Grattapaglia, Dario</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6234-2263</orcidid><orcidid>https://orcid.org/0000-0002-0050-970X</orcidid></search><sort><creationdate>20190624</creationdate><title>Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships</title><author>Marco de Lima, Bruno ; Cappa, Eduardo P ; Silva-Junior, Orzenil B ; Garcia, Carla ; Mansfield, Shawn D ; Grattapaglia, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5e2e664aad873a1dfa1f5dc76a1fa41743913b252a950dff6a0b4907af01e8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Brazil</topic><topic>Breeding</topic><topic>Calibration</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Cellulose pulp</topic><topic>Chemical properties</topic><topic>Cloning</topic><topic>Computer and Information Sciences</topic><topic>Correlation</topic><topic>Density</topic><topic>Eucalyptus</topic><topic>Eucalyptus - chemistry</topic><topic>Eucalyptus - genetics</topic><topic>Eucalyptus - growth & development</topic><topic>Forestry</topic><topic>Genetic control</topic><topic>Genetic diversity</topic><topic>Genetic relationship</topic><topic>Genetic research</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Heritability</topic><topic>Hybridization, Genetic</topic><topic>Hybrids</topic><topic>I.R. radiation</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Lignin</topic><topic>Markers</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Near infrared radiation</topic><topic>Near infrared spectroscopy</topic><topic>Offspring</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>Physical Sciences</topic><topic>Plant Breeding - methods</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Polysaccharides</topic><topic>Progeny</topic><topic>Pulp</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait, Heritable</topic><topic>Research and Analysis Methods</topic><topic>Single-nucleotide polymorphism</topic><topic>Species Specificity</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Tree growth</topic><topic>Trees</topic><topic>Trees - chemistry</topic><topic>Trees - genetics</topic><topic>Trees - growth & development</topic><topic>Wood</topic><topic>Wood - chemistry</topic><topic>Wood - genetics</topic><topic>Wood - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marco de Lima, Bruno</creatorcontrib><creatorcontrib>Cappa, Eduardo P</creatorcontrib><creatorcontrib>Silva-Junior, Orzenil B</creatorcontrib><creatorcontrib>Garcia, Carla</creatorcontrib><creatorcontrib>Mansfield, Shawn D</creatorcontrib><creatorcontrib>Grattapaglia, Dario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marco de Lima, Bruno</au><au>Cappa, Eduardo P</au><au>Silva-Junior, Orzenil B</au><au>Garcia, Carla</au><au>Mansfield, Shawn D</au><au>Grattapaglia, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-24</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0218747</spage><epage>e0218747</epage><pages>e0218747-e0218747</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31233563</pmid><doi>10.1371/journal.pone.0218747</doi><tpages>e0218747</tpages><orcidid>https://orcid.org/0000-0002-6234-2263</orcidid><orcidid>https://orcid.org/0000-0002-0050-970X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-06, Vol.14 (6), p.e0218747-e0218747 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2246223055 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Biology and Life Sciences Biotechnology Brazil Breeding Calibration Cell walls Cellulose Cellulose fibers Cellulose pulp Chemical properties Cloning Computer and Information Sciences Correlation Density Eucalyptus Eucalyptus - chemistry Eucalyptus - genetics Eucalyptus - growth & development Forestry Genetic control Genetic diversity Genetic relationship Genetic research Genome, Plant Genomes Genomics Genotype Heritability Hybridization, Genetic Hybrids I.R. radiation Infrared spectra Infrared spectroscopy Lignin Markers Mathematical models Models, Genetic Near infrared radiation Near infrared spectroscopy Offspring Organic chemicals Organic chemistry Parameter estimation Phenotype Phenotyping Physical Sciences Plant Breeding - methods Polymorphism, Single Nucleotide Polysaccharides Progeny Pulp Quantitative genetics Quantitative Trait, Heritable Research and Analysis Methods Single-nucleotide polymorphism Species Specificity Spectroscopy Spectroscopy, Near-Infrared Tree growth Trees Trees - chemistry Trees - genetics Trees - growth & development Wood Wood - chemistry Wood - genetics Wood - growth & development |
title | Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20genetic%20parameters%20for%20growth%20and%20wood%20properties%20in%20Eucalyptus%20%22urograndis%22%20hybrid%20using%20near-infrared%20phenotyping%20and%20genome-wide%20SNP-based%20relationships&rft.jtitle=PloS%20one&rft.au=Marco%20de%20Lima,%20Bruno&rft.date=2019-06-24&rft.volume=14&rft.issue=6&rft.spage=e0218747&rft.epage=e0218747&rft.pages=e0218747-e0218747&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218747&rft_dat=%3Cgale_plos_%3EA590572635%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246223055&rft_id=info:pmid/31233563&rft_galeid=A590572635&rft_doaj_id=oai_doaj_org_article_95e790425fc44a0bb31a395d6efab333&rfr_iscdi=true |