A simplified workflow for monoclonal antibody sequencing
The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-06, Vol.14 (6), p.e0218717-e0218717 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0218717 |
---|---|
container_issue | 6 |
container_start_page | e0218717 |
container_title | PloS one |
container_volume | 14 |
creator | Meyer, Lena López, Tomás Espinosa, Rafaela Arias, Carlos F Vollmers, Christopher DuBois, Rebecca M |
description | The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5' end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective. |
doi_str_mv | 10.1371/journal.pone.0218717 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2246222981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590572640</galeid><doaj_id>oai_doaj_org_article_8cdc2efb582f495086d9231fb4962c99</doaj_id><sourcerecordid>A590572640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-753c15fb765d2a5c36ce7d77c422657d9fcfda3dfc57d3f4b09e6eb7fb00b3c03</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwDxBEQkKwmMGPxI43SKOKx0iVKvHaWo4fMx4ce2onlP57HCatJqgLlIVj57vn-N6congOwRJiCt_twhC9cMt98HoJEGwopA-KU8gwWhAE8MOj95PiSUo7AGrcEPK4OMEQYZw3p0WzKpPt9s4aq1V5HeJP48J1aUIsu-CDdCF7lML3tg3qpkz6atBeWr95WjwywiX9bFrPiu8fP3w7_7y4uPy0Pl9dLCStm35BayxhbVpKaoVELTGRmipKZYUQqaliRholsDIyb7CpWsA00S01LQAtlgCfFS8PunsXEp-aThyhiiCEWAMzsT4QKogd30fbiXjDg7D870GIGy5ib6XTvJFKIm3aukGmYjVoiGIIQ9NWjCDJWNZ6P7kNbaeV1L6Pws1E51-83fJN-MVJzUDDxuu-mQRiyKNKPe9skto54XUYDvfOWNOMXq_-Qe_vbqI2IjdgvQnZV46ifJU9a4pINdou76Hyo3RnZU6Isfl8VvB2VpCZXv_uN2JIia-_fvl_9vLHnH19xG61cP02BTf0Nvg0B6sDKGNIKWpzN2QI-Bjw22nwMeB8Cngue3H8g-6KbhON_wCZ6PVZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246222981</pqid></control><display><type>article</type><title>A simplified workflow for monoclonal antibody sequencing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Meyer, Lena ; López, Tomás ; Espinosa, Rafaela ; Arias, Carlos F ; Vollmers, Christopher ; DuBois, Rebecca M</creator><contributor>Gill, Andrew C.</contributor><creatorcontrib>Meyer, Lena ; López, Tomás ; Espinosa, Rafaela ; Arias, Carlos F ; Vollmers, Christopher ; DuBois, Rebecca M ; Gill, Andrew C.</creatorcontrib><description>The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5' end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218717</identifier><identifier>PMID: 31233538</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Amplification ; Animals ; Antibodies ; Antibodies, Monoclonal - genetics ; Antibodies, Monoclonal - metabolism ; Antigen-Antibody Reactions ; Antigens ; Biology and Life Sciences ; Cell culture ; Cells (Biology) ; Complementary DNA ; Constant region ; DNA Primers - genetics ; DNA sequencing ; DNA, Complementary - genetics ; Gene expression ; Gene sequencing ; HEK293 Cells ; HIV ; Homology ; Human evolution ; Human immunodeficiency virus ; Humans ; Hybridomas - immunology ; IgG antibody ; Immunoglobulin G ; Immunoglobulin G - genetics ; Immunoglobulin Variable Region - genetics ; Immunoglobulins ; Leukemia ; Mass spectrometry ; Medical research ; Mice ; Monoclonal antibodies ; Mutation ; Oligonucleotides ; Plasmids ; Polymerase chain reaction ; Primers ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - immunology ; Recombinant Fusion Proteins - metabolism ; Research and Analysis Methods ; Reverse engineering ; Reverse Transcriptase Polymerase Chain Reaction - methods ; Reverse transcription ; Ribonucleic acid ; RNA ; Scientific imaging ; Sequence Analysis, Protein - methods ; Workflow ; Workflow software</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0218717-e0218717</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Meyer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Meyer et al 2019 Meyer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-753c15fb765d2a5c36ce7d77c422657d9fcfda3dfc57d3f4b09e6eb7fb00b3c03</citedby><cites>FETCH-LOGICAL-c758t-753c15fb765d2a5c36ce7d77c422657d9fcfda3dfc57d3f4b09e6eb7fb00b3c03</cites><orcidid>0000-0003-4185-5673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590890/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590890/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31233538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gill, Andrew C.</contributor><creatorcontrib>Meyer, Lena</creatorcontrib><creatorcontrib>López, Tomás</creatorcontrib><creatorcontrib>Espinosa, Rafaela</creatorcontrib><creatorcontrib>Arias, Carlos F</creatorcontrib><creatorcontrib>Vollmers, Christopher</creatorcontrib><creatorcontrib>DuBois, Rebecca M</creatorcontrib><title>A simplified workflow for monoclonal antibody sequencing</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5' end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amplification</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal - genetics</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antigen-Antibody Reactions</subject><subject>Antigens</subject><subject>Biology and Life Sciences</subject><subject>Cell culture</subject><subject>Cells (Biology)</subject><subject>Complementary DNA</subject><subject>Constant region</subject><subject>DNA Primers - genetics</subject><subject>DNA sequencing</subject><subject>DNA, Complementary - genetics</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>HEK293 Cells</subject><subject>HIV</subject><subject>Homology</subject><subject>Human evolution</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Hybridomas - immunology</subject><subject>IgG antibody</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - genetics</subject><subject>Immunoglobulin Variable Region - genetics</subject><subject>Immunoglobulins</subject><subject>Leukemia</subject><subject>Mass spectrometry</subject><subject>Medical research</subject><subject>Mice</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Oligonucleotides</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>Primers</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - immunology</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Reverse engineering</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>Reverse transcription</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Scientific imaging</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Workflow</subject><subject>Workflow software</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEoqXwDxBEQkKwmMGPxI43SKOKx0iVKvHaWo4fMx4ce2onlP57HCatJqgLlIVj57vn-N6congOwRJiCt_twhC9cMt98HoJEGwopA-KU8gwWhAE8MOj95PiSUo7AGrcEPK4OMEQYZw3p0WzKpPt9s4aq1V5HeJP48J1aUIsu-CDdCF7lML3tg3qpkz6atBeWr95WjwywiX9bFrPiu8fP3w7_7y4uPy0Pl9dLCStm35BayxhbVpKaoVELTGRmipKZYUQqaliRholsDIyb7CpWsA00S01LQAtlgCfFS8PunsXEp-aThyhiiCEWAMzsT4QKogd30fbiXjDg7D870GIGy5ib6XTvJFKIm3aukGmYjVoiGIIQ9NWjCDJWNZ6P7kNbaeV1L6Pws1E51-83fJN-MVJzUDDxuu-mQRiyKNKPe9skto54XUYDvfOWNOMXq_-Qe_vbqI2IjdgvQnZV46ifJU9a4pINdou76Hyo3RnZU6Isfl8VvB2VpCZXv_uN2JIia-_fvl_9vLHnH19xG61cP02BTf0Nvg0B6sDKGNIKWpzN2QI-Bjw22nwMeB8Cngue3H8g-6KbhON_wCZ6PVZ</recordid><startdate>20190624</startdate><enddate>20190624</enddate><creator>Meyer, Lena</creator><creator>López, Tomás</creator><creator>Espinosa, Rafaela</creator><creator>Arias, Carlos F</creator><creator>Vollmers, Christopher</creator><creator>DuBois, Rebecca M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4185-5673</orcidid></search><sort><creationdate>20190624</creationdate><title>A simplified workflow for monoclonal antibody sequencing</title><author>Meyer, Lena ; López, Tomás ; Espinosa, Rafaela ; Arias, Carlos F ; Vollmers, Christopher ; DuBois, Rebecca M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-753c15fb765d2a5c36ce7d77c422657d9fcfda3dfc57d3f4b09e6eb7fb00b3c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amplification</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal - genetics</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antigen-Antibody Reactions</topic><topic>Antigens</topic><topic>Biology and Life Sciences</topic><topic>Cell culture</topic><topic>Cells (Biology)</topic><topic>Complementary DNA</topic><topic>Constant region</topic><topic>DNA Primers - genetics</topic><topic>DNA sequencing</topic><topic>DNA, Complementary - genetics</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>HEK293 Cells</topic><topic>HIV</topic><topic>Homology</topic><topic>Human evolution</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Hybridomas - immunology</topic><topic>IgG antibody</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - genetics</topic><topic>Immunoglobulin Variable Region - genetics</topic><topic>Immunoglobulins</topic><topic>Leukemia</topic><topic>Mass spectrometry</topic><topic>Medical research</topic><topic>Mice</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Oligonucleotides</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>Primers</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - immunology</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Reverse engineering</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>Reverse transcription</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Scientific imaging</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Lena</creatorcontrib><creatorcontrib>López, Tomás</creatorcontrib><creatorcontrib>Espinosa, Rafaela</creatorcontrib><creatorcontrib>Arias, Carlos F</creatorcontrib><creatorcontrib>Vollmers, Christopher</creatorcontrib><creatorcontrib>DuBois, Rebecca M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Lena</au><au>López, Tomás</au><au>Espinosa, Rafaela</au><au>Arias, Carlos F</au><au>Vollmers, Christopher</au><au>DuBois, Rebecca M</au><au>Gill, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified workflow for monoclonal antibody sequencing</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-24</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0218717</spage><epage>e0218717</epage><pages>e0218717-e0218717</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5' end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31233538</pmid><doi>10.1371/journal.pone.0218717</doi><tpages>e0218717</tpages><orcidid>https://orcid.org/0000-0003-4185-5673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-06, Vol.14 (6), p.e0218717-e0218717 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2246222981 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Amplification Animals Antibodies Antibodies, Monoclonal - genetics Antibodies, Monoclonal - metabolism Antigen-Antibody Reactions Antigens Biology and Life Sciences Cell culture Cells (Biology) Complementary DNA Constant region DNA Primers - genetics DNA sequencing DNA, Complementary - genetics Gene expression Gene sequencing HEK293 Cells HIV Homology Human evolution Human immunodeficiency virus Humans Hybridomas - immunology IgG antibody Immunoglobulin G Immunoglobulin G - genetics Immunoglobulin Variable Region - genetics Immunoglobulins Leukemia Mass spectrometry Medical research Mice Monoclonal antibodies Mutation Oligonucleotides Plasmids Polymerase chain reaction Primers Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - immunology Recombinant Fusion Proteins - metabolism Research and Analysis Methods Reverse engineering Reverse Transcriptase Polymerase Chain Reaction - methods Reverse transcription Ribonucleic acid RNA Scientific imaging Sequence Analysis, Protein - methods Workflow Workflow software |
title | A simplified workflow for monoclonal antibody sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20workflow%20for%20monoclonal%20antibody%20sequencing&rft.jtitle=PloS%20one&rft.au=Meyer,%20Lena&rft.date=2019-06-24&rft.volume=14&rft.issue=6&rft.spage=e0218717&rft.epage=e0218717&rft.pages=e0218717-e0218717&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218717&rft_dat=%3Cgale_plos_%3EA590572640%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246222981&rft_id=info:pmid/31233538&rft_galeid=A590572640&rft_doaj_id=oai_doaj_org_article_8cdc2efb582f495086d9231fb4962c99&rfr_iscdi=true |