Metabolic modulation predicts heart failure tests performance

The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-06, Vol.14 (6), p.e0218153-e0218153
Hauptverfasser: Contaifer, Jr, Daniel, Buckley, Leo F, Wohlford, George, Kumar, Naren G, Morriss, Joshua M, Ranasinghe, Asanga D, Carbone, Salvatore, Canada, Justin M, Trankle, Cory, Abbate, Antonio, Van Tassell, Benjamin W, Wijesinghe, Dayanjan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0218153
container_issue 6
container_start_page e0218153
container_title PloS one
container_volume 14
creator Contaifer, Jr, Daniel
Buckley, Leo F
Wohlford, George
Kumar, Naren G
Morriss, Joshua M
Ranasinghe, Asanga D
Carbone, Salvatore
Canada, Justin M
Trankle, Cory
Abbate, Antonio
Van Tassell, Benjamin W
Wijesinghe, Dayanjan S
description The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associations to CPET and HFBio test performance (peak oxygen consumption (Peak VO2), oxygen uptake efficiency slope (OUES), exercise duration, and minute ventilation-carbon dioxide production slope (VE/VCO2 slope), as well as the established HF biomarkers of inflammation C-reactive protein (CRP), beta-galactoside-binding protein (galectin-3), and N-terminal prohormone of brain natriuretic peptide (NT-proBNP)). A cohort of 49 patients with a left ventricular ejection fraction < 50%, predominantly males African American, presenting a high frequency of diabetes, hyperlipidemia, and hypertension were used in the study. MRA revealed that metabolic models for VE/VCO2 and Peak VO2 were the most fitted models, and the highest predictors' coefficients were from Acylcarnitine C18:2, palmitic acid, citric acid, asparagine, and 3-hydroxybutiric acid. Metabolic Pathway Analysis (MetPA) used predictors to identify the most relevant metabolic pathways associated to the study, aminoacyl-tRNA and amino acid biosynthesis, amino acid metabolism, nitrogen metabolism, pantothenate and CoA biosynthesis, sphingolipid and glycerolipid metabolism, fatty acid biosynthesis, glutathione metabolism, and pentose phosphate pathway (PPP). Metabolite Set Enrichment Analysis (MSEA) found associations of our findings with pre-existing biological knowledge from studies of human plasma metabolism as brain dysfunction and enzyme deficiencies associated with lactic acidosis. Our results indicate a profile of oxidative stress, lactic acidosis, and metabolic syndrome coupled with mitochondria dysfunction in patients with HF tests poor performance. The insights resulting from this study coincides with what has previously been discussed in existing literature thereby supporting the validity of our findings while at the same time characterizing the metabolic underpinning of CPET and HFBio.
doi_str_mv 10.1371/journal.pone.0218153
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2244362651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A589897497</galeid><doaj_id>oai_doaj_org_article_0a331ed4b98f449bb4978e3fa43da01a</doaj_id><sourcerecordid>A589897497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-64b3fa19945b57479d57a8a6c41ad85da88fc60250e2b3de4bc8f89e1eccdfd43</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QHBNGLGfPd5EJhWfwYWFnw6zakyelMhkwzJq3ovzez012mshfSi5aT57w57-lbVU8xWmBa4zebOKTOhMUudrBABEvM6b3qFCtK5oIgev_o-6R6lPMGIU6lEA-rE4oJQRjR0-rtZ-hNE4O3s210QzC9j91sl8B52-fZGkzqZ63xYUgw6yGX2g5SG9PWdBYeVw9aEzI8Gd9n1fcP779dfJpfXn1cXpxfzq1QpJ8L1tDWYKUYb3jNauV4baQRlmHjJHdGytYKRDgC0lAHrLGylQowWOtax-hZ9fyguwsx69F51oQwRgURHBdieSBcNBu9S35r0h8djdfXhZhWujjxNoBGhlIMjjVKtoyppmGqllAGZNQZhE3RejfeNjRbcBa6PpkwEZ2edH6tV_GXFlwKovbDvBoFUvw5lKXprc8WQjAdxOF6bi44EQIV9MU_6N3uRmpligHftbHca_ei-pxLJVVdPBRqcQdVHgdbb0tMWl_qk4bXk4bC9PC7X5khZ738-uX_2asfU_blEVsyFPp1jmHYZytPQXYAbYo5J2hvl4yR3qf8Zht6n3I9pry0PTv-QbdNN7GmfwHAeffM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244362651</pqid></control><display><type>article</type><title>Metabolic modulation predicts heart failure tests performance</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Contaifer, Jr, Daniel ; Buckley, Leo F ; Wohlford, George ; Kumar, Naren G ; Morriss, Joshua M ; Ranasinghe, Asanga D ; Carbone, Salvatore ; Canada, Justin M ; Trankle, Cory ; Abbate, Antonio ; Van Tassell, Benjamin W ; Wijesinghe, Dayanjan S</creator><contributor>Passino, Claudio</contributor><creatorcontrib>Contaifer, Jr, Daniel ; Buckley, Leo F ; Wohlford, George ; Kumar, Naren G ; Morriss, Joshua M ; Ranasinghe, Asanga D ; Carbone, Salvatore ; Canada, Justin M ; Trankle, Cory ; Abbate, Antonio ; Van Tassell, Benjamin W ; Wijesinghe, Dayanjan S ; Passino, Claudio</creatorcontrib><description>The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associations to CPET and HFBio test performance (peak oxygen consumption (Peak VO2), oxygen uptake efficiency slope (OUES), exercise duration, and minute ventilation-carbon dioxide production slope (VE/VCO2 slope), as well as the established HF biomarkers of inflammation C-reactive protein (CRP), beta-galactoside-binding protein (galectin-3), and N-terminal prohormone of brain natriuretic peptide (NT-proBNP)). A cohort of 49 patients with a left ventricular ejection fraction &lt; 50%, predominantly males African American, presenting a high frequency of diabetes, hyperlipidemia, and hypertension were used in the study. MRA revealed that metabolic models for VE/VCO2 and Peak VO2 were the most fitted models, and the highest predictors' coefficients were from Acylcarnitine C18:2, palmitic acid, citric acid, asparagine, and 3-hydroxybutiric acid. Metabolic Pathway Analysis (MetPA) used predictors to identify the most relevant metabolic pathways associated to the study, aminoacyl-tRNA and amino acid biosynthesis, amino acid metabolism, nitrogen metabolism, pantothenate and CoA biosynthesis, sphingolipid and glycerolipid metabolism, fatty acid biosynthesis, glutathione metabolism, and pentose phosphate pathway (PPP). Metabolite Set Enrichment Analysis (MSEA) found associations of our findings with pre-existing biological knowledge from studies of human plasma metabolism as brain dysfunction and enzyme deficiencies associated with lactic acidosis. Our results indicate a profile of oxidative stress, lactic acidosis, and metabolic syndrome coupled with mitochondria dysfunction in patients with HF tests poor performance. The insights resulting from this study coincides with what has previously been discussed in existing literature thereby supporting the validity of our findings while at the same time characterizing the metabolic underpinning of CPET and HFBio.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218153</identifier><identifier>PMID: 31220103</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidosis ; African Americans ; Amino acids ; Analysis ; Asparagine ; Bioindicators ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Biomarkers - blood ; Biosynthesis ; Blood plasma ; Brain ; Brain natriuretic peptide ; Brain research ; C-reactive protein ; Carbon dioxide ; Cardiovascular disease ; Citric acid ; Cohort Studies ; Congestive heart failure ; Diabetes mellitus ; Diagnosis ; Enzymes ; Exercise Test ; Fatty acids ; Female ; Galectin-3 ; Glutathione ; Heart ; Heart failure ; Heart Failure - blood ; Heart Failure - physiopathology ; Humans ; Hyperlipidemia ; Hypertension ; Inflammation ; Kinases ; Lactic acidosis ; Lipid metabolism ; Lipids ; Male ; Males ; Medicine and Health Sciences ; Metabolic disorders ; Metabolic pathways ; Metabolic syndrome ; Metabolism ; Metabolites ; Metabolome ; Metabolomics ; Middle Aged ; Mitochondria ; Monosaccharides ; Mortality ; Multiple regression analysis ; Natriuretic Peptide, Brain - blood ; Natriuretic peptides ; Nitrogen ; Nitrogen metabolism ; Organic acids ; Oxidative stress ; Oxygen ; Oxygen Consumption ; Oxygen uptake ; Palmitic acid ; Pentose ; Pentose phosphate pathway ; Peptides ; Phenotypes ; Phenotyping ; Phosphates ; Prevalence studies (Epidemiology) ; Protein binding ; Proteins ; Regression Analysis ; RNA ; Saturated fatty acids ; Slopes ; Steroids (Organic compounds) ; Transfer RNA ; tRNA ; Ventilation ; Ventricle</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0218153-e0218153</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Contaifer Jr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Contaifer Jr et al 2019 Contaifer Jr et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-64b3fa19945b57479d57a8a6c41ad85da88fc60250e2b3de4bc8f89e1eccdfd43</citedby><cites>FETCH-LOGICAL-c692t-64b3fa19945b57479d57a8a6c41ad85da88fc60250e2b3de4bc8f89e1eccdfd43</cites><orcidid>0000-0002-2124-5109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586291/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586291/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31220103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Passino, Claudio</contributor><creatorcontrib>Contaifer, Jr, Daniel</creatorcontrib><creatorcontrib>Buckley, Leo F</creatorcontrib><creatorcontrib>Wohlford, George</creatorcontrib><creatorcontrib>Kumar, Naren G</creatorcontrib><creatorcontrib>Morriss, Joshua M</creatorcontrib><creatorcontrib>Ranasinghe, Asanga D</creatorcontrib><creatorcontrib>Carbone, Salvatore</creatorcontrib><creatorcontrib>Canada, Justin M</creatorcontrib><creatorcontrib>Trankle, Cory</creatorcontrib><creatorcontrib>Abbate, Antonio</creatorcontrib><creatorcontrib>Van Tassell, Benjamin W</creatorcontrib><creatorcontrib>Wijesinghe, Dayanjan S</creatorcontrib><title>Metabolic modulation predicts heart failure tests performance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associations to CPET and HFBio test performance (peak oxygen consumption (Peak VO2), oxygen uptake efficiency slope (OUES), exercise duration, and minute ventilation-carbon dioxide production slope (VE/VCO2 slope), as well as the established HF biomarkers of inflammation C-reactive protein (CRP), beta-galactoside-binding protein (galectin-3), and N-terminal prohormone of brain natriuretic peptide (NT-proBNP)). A cohort of 49 patients with a left ventricular ejection fraction &lt; 50%, predominantly males African American, presenting a high frequency of diabetes, hyperlipidemia, and hypertension were used in the study. MRA revealed that metabolic models for VE/VCO2 and Peak VO2 were the most fitted models, and the highest predictors' coefficients were from Acylcarnitine C18:2, palmitic acid, citric acid, asparagine, and 3-hydroxybutiric acid. Metabolic Pathway Analysis (MetPA) used predictors to identify the most relevant metabolic pathways associated to the study, aminoacyl-tRNA and amino acid biosynthesis, amino acid metabolism, nitrogen metabolism, pantothenate and CoA biosynthesis, sphingolipid and glycerolipid metabolism, fatty acid biosynthesis, glutathione metabolism, and pentose phosphate pathway (PPP). Metabolite Set Enrichment Analysis (MSEA) found associations of our findings with pre-existing biological knowledge from studies of human plasma metabolism as brain dysfunction and enzyme deficiencies associated with lactic acidosis. Our results indicate a profile of oxidative stress, lactic acidosis, and metabolic syndrome coupled with mitochondria dysfunction in patients with HF tests poor performance. The insights resulting from this study coincides with what has previously been discussed in existing literature thereby supporting the validity of our findings while at the same time characterizing the metabolic underpinning of CPET and HFBio.</description><subject>Acidosis</subject><subject>African Americans</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Asparagine</subject><subject>Bioindicators</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biosynthesis</subject><subject>Blood plasma</subject><subject>Brain</subject><subject>Brain natriuretic peptide</subject><subject>Brain research</subject><subject>C-reactive protein</subject><subject>Carbon dioxide</subject><subject>Cardiovascular disease</subject><subject>Citric acid</subject><subject>Cohort Studies</subject><subject>Congestive heart failure</subject><subject>Diabetes mellitus</subject><subject>Diagnosis</subject><subject>Enzymes</subject><subject>Exercise Test</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Galectin-3</subject><subject>Glutathione</subject><subject>Heart</subject><subject>Heart failure</subject><subject>Heart Failure - blood</subject><subject>Heart Failure - physiopathology</subject><subject>Humans</subject><subject>Hyperlipidemia</subject><subject>Hypertension</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Lactic acidosis</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Male</subject><subject>Males</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic disorders</subject><subject>Metabolic pathways</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Monosaccharides</subject><subject>Mortality</subject><subject>Multiple regression analysis</subject><subject>Natriuretic Peptide, Brain - blood</subject><subject>Natriuretic peptides</subject><subject>Nitrogen</subject><subject>Nitrogen metabolism</subject><subject>Organic acids</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Oxygen uptake</subject><subject>Palmitic acid</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Peptides</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Phosphates</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Regression Analysis</subject><subject>RNA</subject><subject>Saturated fatty acids</subject><subject>Slopes</subject><subject>Steroids (Organic compounds)</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>Ventilation</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QHBNGLGfPd5EJhWfwYWFnw6zakyelMhkwzJq3ovzez012mshfSi5aT57w57-lbVU8xWmBa4zebOKTOhMUudrBABEvM6b3qFCtK5oIgev_o-6R6lPMGIU6lEA-rE4oJQRjR0-rtZ-hNE4O3s210QzC9j91sl8B52-fZGkzqZ63xYUgw6yGX2g5SG9PWdBYeVw9aEzI8Gd9n1fcP779dfJpfXn1cXpxfzq1QpJ8L1tDWYKUYb3jNauV4baQRlmHjJHdGytYKRDgC0lAHrLGylQowWOtax-hZ9fyguwsx69F51oQwRgURHBdieSBcNBu9S35r0h8djdfXhZhWujjxNoBGhlIMjjVKtoyppmGqllAGZNQZhE3RejfeNjRbcBa6PpkwEZ2edH6tV_GXFlwKovbDvBoFUvw5lKXprc8WQjAdxOF6bi44EQIV9MU_6N3uRmpligHftbHca_ei-pxLJVVdPBRqcQdVHgdbb0tMWl_qk4bXk4bC9PC7X5khZ738-uX_2asfU_blEVsyFPp1jmHYZytPQXYAbYo5J2hvl4yR3qf8Zht6n3I9pry0PTv-QbdNN7GmfwHAeffM</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Contaifer, Jr, Daniel</creator><creator>Buckley, Leo F</creator><creator>Wohlford, George</creator><creator>Kumar, Naren G</creator><creator>Morriss, Joshua M</creator><creator>Ranasinghe, Asanga D</creator><creator>Carbone, Salvatore</creator><creator>Canada, Justin M</creator><creator>Trankle, Cory</creator><creator>Abbate, Antonio</creator><creator>Van Tassell, Benjamin W</creator><creator>Wijesinghe, Dayanjan S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2124-5109</orcidid></search><sort><creationdate>20190620</creationdate><title>Metabolic modulation predicts heart failure tests performance</title><author>Contaifer, Jr, Daniel ; Buckley, Leo F ; Wohlford, George ; Kumar, Naren G ; Morriss, Joshua M ; Ranasinghe, Asanga D ; Carbone, Salvatore ; Canada, Justin M ; Trankle, Cory ; Abbate, Antonio ; Van Tassell, Benjamin W ; Wijesinghe, Dayanjan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-64b3fa19945b57479d57a8a6c41ad85da88fc60250e2b3de4bc8f89e1eccdfd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidosis</topic><topic>African Americans</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Asparagine</topic><topic>Bioindicators</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biosynthesis</topic><topic>Blood plasma</topic><topic>Brain</topic><topic>Brain natriuretic peptide</topic><topic>Brain research</topic><topic>C-reactive protein</topic><topic>Carbon dioxide</topic><topic>Cardiovascular disease</topic><topic>Citric acid</topic><topic>Cohort Studies</topic><topic>Congestive heart failure</topic><topic>Diabetes mellitus</topic><topic>Diagnosis</topic><topic>Enzymes</topic><topic>Exercise Test</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Galectin-3</topic><topic>Glutathione</topic><topic>Heart</topic><topic>Heart failure</topic><topic>Heart Failure - blood</topic><topic>Heart Failure - physiopathology</topic><topic>Humans</topic><topic>Hyperlipidemia</topic><topic>Hypertension</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Lactic acidosis</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Male</topic><topic>Males</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic disorders</topic><topic>Metabolic pathways</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Monosaccharides</topic><topic>Mortality</topic><topic>Multiple regression analysis</topic><topic>Natriuretic Peptide, Brain - blood</topic><topic>Natriuretic peptides</topic><topic>Nitrogen</topic><topic>Nitrogen metabolism</topic><topic>Organic acids</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Oxygen uptake</topic><topic>Palmitic acid</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Peptides</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Phosphates</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Regression Analysis</topic><topic>RNA</topic><topic>Saturated fatty acids</topic><topic>Slopes</topic><topic>Steroids (Organic compounds)</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>Ventilation</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contaifer, Jr, Daniel</creatorcontrib><creatorcontrib>Buckley, Leo F</creatorcontrib><creatorcontrib>Wohlford, George</creatorcontrib><creatorcontrib>Kumar, Naren G</creatorcontrib><creatorcontrib>Morriss, Joshua M</creatorcontrib><creatorcontrib>Ranasinghe, Asanga D</creatorcontrib><creatorcontrib>Carbone, Salvatore</creatorcontrib><creatorcontrib>Canada, Justin M</creatorcontrib><creatorcontrib>Trankle, Cory</creatorcontrib><creatorcontrib>Abbate, Antonio</creatorcontrib><creatorcontrib>Van Tassell, Benjamin W</creatorcontrib><creatorcontrib>Wijesinghe, Dayanjan S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contaifer, Jr, Daniel</au><au>Buckley, Leo F</au><au>Wohlford, George</au><au>Kumar, Naren G</au><au>Morriss, Joshua M</au><au>Ranasinghe, Asanga D</au><au>Carbone, Salvatore</au><au>Canada, Justin M</au><au>Trankle, Cory</au><au>Abbate, Antonio</au><au>Van Tassell, Benjamin W</au><au>Wijesinghe, Dayanjan S</au><au>Passino, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic modulation predicts heart failure tests performance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0218153</spage><epage>e0218153</epage><pages>e0218153-e0218153</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associations to CPET and HFBio test performance (peak oxygen consumption (Peak VO2), oxygen uptake efficiency slope (OUES), exercise duration, and minute ventilation-carbon dioxide production slope (VE/VCO2 slope), as well as the established HF biomarkers of inflammation C-reactive protein (CRP), beta-galactoside-binding protein (galectin-3), and N-terminal prohormone of brain natriuretic peptide (NT-proBNP)). A cohort of 49 patients with a left ventricular ejection fraction &lt; 50%, predominantly males African American, presenting a high frequency of diabetes, hyperlipidemia, and hypertension were used in the study. MRA revealed that metabolic models for VE/VCO2 and Peak VO2 were the most fitted models, and the highest predictors' coefficients were from Acylcarnitine C18:2, palmitic acid, citric acid, asparagine, and 3-hydroxybutiric acid. Metabolic Pathway Analysis (MetPA) used predictors to identify the most relevant metabolic pathways associated to the study, aminoacyl-tRNA and amino acid biosynthesis, amino acid metabolism, nitrogen metabolism, pantothenate and CoA biosynthesis, sphingolipid and glycerolipid metabolism, fatty acid biosynthesis, glutathione metabolism, and pentose phosphate pathway (PPP). Metabolite Set Enrichment Analysis (MSEA) found associations of our findings with pre-existing biological knowledge from studies of human plasma metabolism as brain dysfunction and enzyme deficiencies associated with lactic acidosis. Our results indicate a profile of oxidative stress, lactic acidosis, and metabolic syndrome coupled with mitochondria dysfunction in patients with HF tests poor performance. The insights resulting from this study coincides with what has previously been discussed in existing literature thereby supporting the validity of our findings while at the same time characterizing the metabolic underpinning of CPET and HFBio.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31220103</pmid><doi>10.1371/journal.pone.0218153</doi><tpages>e0218153</tpages><orcidid>https://orcid.org/0000-0002-2124-5109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-06, Vol.14 (6), p.e0218153-e0218153
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2244362651
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acidosis
African Americans
Amino acids
Analysis
Asparagine
Bioindicators
Biological markers
Biology and Life Sciences
Biomarkers
Biomarkers - blood
Biosynthesis
Blood plasma
Brain
Brain natriuretic peptide
Brain research
C-reactive protein
Carbon dioxide
Cardiovascular disease
Citric acid
Cohort Studies
Congestive heart failure
Diabetes mellitus
Diagnosis
Enzymes
Exercise Test
Fatty acids
Female
Galectin-3
Glutathione
Heart
Heart failure
Heart Failure - blood
Heart Failure - physiopathology
Humans
Hyperlipidemia
Hypertension
Inflammation
Kinases
Lactic acidosis
Lipid metabolism
Lipids
Male
Males
Medicine and Health Sciences
Metabolic disorders
Metabolic pathways
Metabolic syndrome
Metabolism
Metabolites
Metabolome
Metabolomics
Middle Aged
Mitochondria
Monosaccharides
Mortality
Multiple regression analysis
Natriuretic Peptide, Brain - blood
Natriuretic peptides
Nitrogen
Nitrogen metabolism
Organic acids
Oxidative stress
Oxygen
Oxygen Consumption
Oxygen uptake
Palmitic acid
Pentose
Pentose phosphate pathway
Peptides
Phenotypes
Phenotyping
Phosphates
Prevalence studies (Epidemiology)
Protein binding
Proteins
Regression Analysis
RNA
Saturated fatty acids
Slopes
Steroids (Organic compounds)
Transfer RNA
tRNA
Ventilation
Ventricle
title Metabolic modulation predicts heart failure tests performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20modulation%20predicts%20heart%20failure%20tests%20performance&rft.jtitle=PloS%20one&rft.au=Contaifer,%20Jr,%20Daniel&rft.date=2019-06-20&rft.volume=14&rft.issue=6&rft.spage=e0218153&rft.epage=e0218153&rft.pages=e0218153-e0218153&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218153&rft_dat=%3Cgale_plos_%3EA589897497%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244362651&rft_id=info:pmid/31220103&rft_galeid=A589897497&rft_doaj_id=oai_doaj_org_article_0a331ed4b98f449bb4978e3fa43da01a&rfr_iscdi=true