Evaluating the predictability of medical conditions from social media posts

We studied whether medical conditions across 21 broad categories were predictable from social media content across approximately 20 million words written by 999 consenting patients. Facebook language significantly improved upon the prediction accuracy of demographic variables for 18 of the 21 diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-06, Vol.14 (6), p.e0215476
Hauptverfasser: Merchant, Raina M, Asch, David A, Crutchley, Patrick, Ungar, Lyle H, Guntuku, Sharath C, Eichstaedt, Johannes C, Hill, Shawndra, Padrez, Kevin, Smith, Robert J, Schwartz, H Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0215476
container_title PloS one
container_volume 14
creator Merchant, Raina M
Asch, David A
Crutchley, Patrick
Ungar, Lyle H
Guntuku, Sharath C
Eichstaedt, Johannes C
Hill, Shawndra
Padrez, Kevin
Smith, Robert J
Schwartz, H Andrew
description We studied whether medical conditions across 21 broad categories were predictable from social media content across approximately 20 million words written by 999 consenting patients. Facebook language significantly improved upon the prediction accuracy of demographic variables for 18 of the 21 disease categories; it was particularly effective at predicting diabetes and mental health conditions including anxiety, depression and psychoses. Social media data are a quantifiable link into the otherwise elusive daily lives of patients, providing an avenue for study and assessment of behavioral and environmental disease risk factors. Analogous to the genome, social media data linked to medical diagnoses can be banked with patients' consent, and an encoding of social media language can be used as markers of disease risk, serve as a screening tool, and elucidate disease epidemiology. In what we believe to be the first report linking electronic medical record data with social media data from consenting patients, we identified that patients' Facebook status updates can predict many health conditions, suggesting opportunities to use social media data to determine disease onset or exacerbation and to conduct social media-based health interventions.
doi_str_mv 10.1371/journal.pone.0215476
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2242106675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A589464485</galeid><doaj_id>oai_doaj_org_article_3d1528f4d9d342ab88d5b8f67adf08af</doaj_id><sourcerecordid>A589464485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-f4f7ed3518c48566ed208c8571d0311ccf5b737a38225c7de19379c25081935c3</originalsourceid><addsrcrecordid>eNqNkltrFDEYhgdRbK3-A9EBQfBi1xwmh70RSqm6WCh4ug2ZHGazZCZrkin235vtTssOKEguEr4835vkzVtVLyFYQszg-20Y4yD9chcGswQIkobRR9UpXGG0oAjgx0frk-pZSlsACOaUPq1OMESAEtycVl8ub6QfZXZDV-eNqXfRaKeybJ13-bYOtu73BelrFQbtsgtDqm0MfZ2CcqW835b1LqScnldPrPTJvJjms-rHx8vvF58XV9ef1hfnVwvFCM8L21hmNCaQq4YTSo1GgCtOGNQAQ6iUJS3DTGKOEFFMm_IMtlKIAF5WROGz6vVBd-dDEpMPSSDUIAgoZaQQ6wOhg9yKXXS9jLciSCfuCiF2QsbslDcCa0gQt41eadwg2XKuScstZVJbwKUtWh-m08a2PFaZIUfpZ6LzncFtRBduBCWMllEE3kwCMfwaTcr_uPJEdbLcyg02FDHVu6TEOeGrhjbFrEIt_0KVoU3vyg8Z60p91vBu1lCYbH7nTo4pifW3r__PXv-cs2-P2I2RPm9S8ONdQOZgcwBVDClFYx-cg0Dsg3zvhtgHWUxBLm2vjl1_aLpPLv4DPFztgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242106675</pqid></control><display><type>article</type><title>Evaluating the predictability of medical conditions from social media posts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Merchant, Raina M ; Asch, David A ; Crutchley, Patrick ; Ungar, Lyle H ; Guntuku, Sharath C ; Eichstaedt, Johannes C ; Hill, Shawndra ; Padrez, Kevin ; Smith, Robert J ; Schwartz, H Andrew</creator><contributor>Ramagopalan, Sreeram V.</contributor><creatorcontrib>Merchant, Raina M ; Asch, David A ; Crutchley, Patrick ; Ungar, Lyle H ; Guntuku, Sharath C ; Eichstaedt, Johannes C ; Hill, Shawndra ; Padrez, Kevin ; Smith, Robert J ; Schwartz, H Andrew ; Ramagopalan, Sreeram V.</creatorcontrib><description>We studied whether medical conditions across 21 broad categories were predictable from social media content across approximately 20 million words written by 999 consenting patients. Facebook language significantly improved upon the prediction accuracy of demographic variables for 18 of the 21 disease categories; it was particularly effective at predicting diabetes and mental health conditions including anxiety, depression and psychoses. Social media data are a quantifiable link into the otherwise elusive daily lives of patients, providing an avenue for study and assessment of behavioral and environmental disease risk factors. Analogous to the genome, social media data linked to medical diagnoses can be banked with patients' consent, and an encoding of social media language can be used as markers of disease risk, serve as a screening tool, and elucidate disease epidemiology. In what we believe to be the first report linking electronic medical record data with social media data from consenting patients, we identified that patients' Facebook status updates can predict many health conditions, suggesting opportunities to use social media data to determine disease onset or exacerbation and to conduct social media-based health interventions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0215476</identifier><identifier>PMID: 31206534</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alzheimer's disease ; Analysis ; Anxiety ; Artificial intelligence ; Big Data ; Biology and Life Sciences ; Comorbidity ; Computer and Information Sciences ; Demographic variables ; Demographics ; Depression ; Depression (Mood disorder) ; Depressive Disorder ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diagnosis ; Digital media ; Disease ; Electronic Health Records ; Electronic medical records ; Electronic records ; Emergency medical care ; Environmental assessment ; Environmental diseases ; Environmental illness ; Epidemiology ; Female ; Gene expression ; Genomes ; Genomics ; Health and safety screening ; Health care ; Health risk assessment ; Health risks ; Humans ; Information science ; Language ; Machine learning ; Male ; Medical records ; Medical research ; Medicine ; Medicine and Health Sciences ; Mental depression ; Mental Disorders ; Mental Health ; Models, Biological ; Natural language processing ; Patients ; Physical Sciences ; Predictions ; Psychology ; Psychosis ; Psychotic disorders ; Research and Analysis Methods ; Risk analysis ; Risk factors ; Social Media ; Social networks ; Social Sciences</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0215476</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-f4f7ed3518c48566ed208c8571d0311ccf5b737a38225c7de19379c25081935c3</citedby><cites>FETCH-LOGICAL-c758t-f4f7ed3518c48566ed208c8571d0311ccf5b737a38225c7de19379c25081935c3</cites><orcidid>0000-0002-2929-0035 ; 0000-0003-4400-9309 ; 0000-0001-9746-1230 ; 0000-0002-9801-6881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576767/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576767/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31206534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ramagopalan, Sreeram V.</contributor><creatorcontrib>Merchant, Raina M</creatorcontrib><creatorcontrib>Asch, David A</creatorcontrib><creatorcontrib>Crutchley, Patrick</creatorcontrib><creatorcontrib>Ungar, Lyle H</creatorcontrib><creatorcontrib>Guntuku, Sharath C</creatorcontrib><creatorcontrib>Eichstaedt, Johannes C</creatorcontrib><creatorcontrib>Hill, Shawndra</creatorcontrib><creatorcontrib>Padrez, Kevin</creatorcontrib><creatorcontrib>Smith, Robert J</creatorcontrib><creatorcontrib>Schwartz, H Andrew</creatorcontrib><title>Evaluating the predictability of medical conditions from social media posts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We studied whether medical conditions across 21 broad categories were predictable from social media content across approximately 20 million words written by 999 consenting patients. Facebook language significantly improved upon the prediction accuracy of demographic variables for 18 of the 21 disease categories; it was particularly effective at predicting diabetes and mental health conditions including anxiety, depression and psychoses. Social media data are a quantifiable link into the otherwise elusive daily lives of patients, providing an avenue for study and assessment of behavioral and environmental disease risk factors. Analogous to the genome, social media data linked to medical diagnoses can be banked with patients' consent, and an encoding of social media language can be used as markers of disease risk, serve as a screening tool, and elucidate disease epidemiology. In what we believe to be the first report linking electronic medical record data with social media data from consenting patients, we identified that patients' Facebook status updates can predict many health conditions, suggesting opportunities to use social media data to determine disease onset or exacerbation and to conduct social media-based health interventions.</description><subject>Alzheimer's disease</subject><subject>Analysis</subject><subject>Anxiety</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Biology and Life Sciences</subject><subject>Comorbidity</subject><subject>Computer and Information Sciences</subject><subject>Demographic variables</subject><subject>Demographics</subject><subject>Depression</subject><subject>Depression (Mood disorder)</subject><subject>Depressive Disorder</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diagnosis</subject><subject>Digital media</subject><subject>Disease</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Electronic records</subject><subject>Emergency medical care</subject><subject>Environmental assessment</subject><subject>Environmental diseases</subject><subject>Environmental illness</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health and safety screening</subject><subject>Health care</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Humans</subject><subject>Information science</subject><subject>Language</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mental depression</subject><subject>Mental Disorders</subject><subject>Mental Health</subject><subject>Models, Biological</subject><subject>Natural language processing</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Psychology</subject><subject>Psychosis</subject><subject>Psychotic disorders</subject><subject>Research and Analysis Methods</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEYhgdRbK3-A9EBQfBi1xwmh70RSqm6WCh4ug2ZHGazZCZrkin235vtTssOKEguEr4835vkzVtVLyFYQszg-20Y4yD9chcGswQIkobRR9UpXGG0oAjgx0frk-pZSlsACOaUPq1OMESAEtycVl8ub6QfZXZDV-eNqXfRaKeybJ13-bYOtu73BelrFQbtsgtDqm0MfZ2CcqW835b1LqScnldPrPTJvJjms-rHx8vvF58XV9ef1hfnVwvFCM8L21hmNCaQq4YTSo1GgCtOGNQAQ6iUJS3DTGKOEFFMm_IMtlKIAF5WROGz6vVBd-dDEpMPSSDUIAgoZaQQ6wOhg9yKXXS9jLciSCfuCiF2QsbslDcCa0gQt41eadwg2XKuScstZVJbwKUtWh-m08a2PFaZIUfpZ6LzncFtRBduBCWMllEE3kwCMfwaTcr_uPJEdbLcyg02FDHVu6TEOeGrhjbFrEIt_0KVoU3vyg8Z60p91vBu1lCYbH7nTo4pifW3r__PXv-cs2-P2I2RPm9S8ONdQOZgcwBVDClFYx-cg0Dsg3zvhtgHWUxBLm2vjl1_aLpPLv4DPFztgA</recordid><startdate>20190617</startdate><enddate>20190617</enddate><creator>Merchant, Raina M</creator><creator>Asch, David A</creator><creator>Crutchley, Patrick</creator><creator>Ungar, Lyle H</creator><creator>Guntuku, Sharath C</creator><creator>Eichstaedt, Johannes C</creator><creator>Hill, Shawndra</creator><creator>Padrez, Kevin</creator><creator>Smith, Robert J</creator><creator>Schwartz, H Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2929-0035</orcidid><orcidid>https://orcid.org/0000-0003-4400-9309</orcidid><orcidid>https://orcid.org/0000-0001-9746-1230</orcidid><orcidid>https://orcid.org/0000-0002-9801-6881</orcidid></search><sort><creationdate>20190617</creationdate><title>Evaluating the predictability of medical conditions from social media posts</title><author>Merchant, Raina M ; Asch, David A ; Crutchley, Patrick ; Ungar, Lyle H ; Guntuku, Sharath C ; Eichstaedt, Johannes C ; Hill, Shawndra ; Padrez, Kevin ; Smith, Robert J ; Schwartz, H Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-f4f7ed3518c48566ed208c8571d0311ccf5b737a38225c7de19379c25081935c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer's disease</topic><topic>Analysis</topic><topic>Anxiety</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Biology and Life Sciences</topic><topic>Comorbidity</topic><topic>Computer and Information Sciences</topic><topic>Demographic variables</topic><topic>Demographics</topic><topic>Depression</topic><topic>Depression (Mood disorder)</topic><topic>Depressive Disorder</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diagnosis</topic><topic>Digital media</topic><topic>Disease</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Electronic records</topic><topic>Emergency medical care</topic><topic>Environmental assessment</topic><topic>Environmental diseases</topic><topic>Environmental illness</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health and safety screening</topic><topic>Health care</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Humans</topic><topic>Information science</topic><topic>Language</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mental depression</topic><topic>Mental Disorders</topic><topic>Mental Health</topic><topic>Models, Biological</topic><topic>Natural language processing</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Psychology</topic><topic>Psychosis</topic><topic>Psychotic disorders</topic><topic>Research and Analysis Methods</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merchant, Raina M</creatorcontrib><creatorcontrib>Asch, David A</creatorcontrib><creatorcontrib>Crutchley, Patrick</creatorcontrib><creatorcontrib>Ungar, Lyle H</creatorcontrib><creatorcontrib>Guntuku, Sharath C</creatorcontrib><creatorcontrib>Eichstaedt, Johannes C</creatorcontrib><creatorcontrib>Hill, Shawndra</creatorcontrib><creatorcontrib>Padrez, Kevin</creatorcontrib><creatorcontrib>Smith, Robert J</creatorcontrib><creatorcontrib>Schwartz, H Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merchant, Raina M</au><au>Asch, David A</au><au>Crutchley, Patrick</au><au>Ungar, Lyle H</au><au>Guntuku, Sharath C</au><au>Eichstaedt, Johannes C</au><au>Hill, Shawndra</au><au>Padrez, Kevin</au><au>Smith, Robert J</au><au>Schwartz, H Andrew</au><au>Ramagopalan, Sreeram V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the predictability of medical conditions from social media posts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-17</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0215476</spage><pages>e0215476-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We studied whether medical conditions across 21 broad categories were predictable from social media content across approximately 20 million words written by 999 consenting patients. Facebook language significantly improved upon the prediction accuracy of demographic variables for 18 of the 21 disease categories; it was particularly effective at predicting diabetes and mental health conditions including anxiety, depression and psychoses. Social media data are a quantifiable link into the otherwise elusive daily lives of patients, providing an avenue for study and assessment of behavioral and environmental disease risk factors. Analogous to the genome, social media data linked to medical diagnoses can be banked with patients' consent, and an encoding of social media language can be used as markers of disease risk, serve as a screening tool, and elucidate disease epidemiology. In what we believe to be the first report linking electronic medical record data with social media data from consenting patients, we identified that patients' Facebook status updates can predict many health conditions, suggesting opportunities to use social media data to determine disease onset or exacerbation and to conduct social media-based health interventions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31206534</pmid><doi>10.1371/journal.pone.0215476</doi><tpages>e0215476</tpages><orcidid>https://orcid.org/0000-0002-2929-0035</orcidid><orcidid>https://orcid.org/0000-0003-4400-9309</orcidid><orcidid>https://orcid.org/0000-0001-9746-1230</orcidid><orcidid>https://orcid.org/0000-0002-9801-6881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-06, Vol.14 (6), p.e0215476
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2242106675
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Alzheimer's disease
Analysis
Anxiety
Artificial intelligence
Big Data
Biology and Life Sciences
Comorbidity
Computer and Information Sciences
Demographic variables
Demographics
Depression
Depression (Mood disorder)
Depressive Disorder
Diabetes
Diabetes mellitus
Diabetes Mellitus - diagnosis
Diagnosis
Digital media
Disease
Electronic Health Records
Electronic medical records
Electronic records
Emergency medical care
Environmental assessment
Environmental diseases
Environmental illness
Epidemiology
Female
Gene expression
Genomes
Genomics
Health and safety screening
Health care
Health risk assessment
Health risks
Humans
Information science
Language
Machine learning
Male
Medical records
Medical research
Medicine
Medicine and Health Sciences
Mental depression
Mental Disorders
Mental Health
Models, Biological
Natural language processing
Patients
Physical Sciences
Predictions
Psychology
Psychosis
Psychotic disorders
Research and Analysis Methods
Risk analysis
Risk factors
Social Media
Social networks
Social Sciences
title Evaluating the predictability of medical conditions from social media posts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20predictability%20of%20medical%20conditions%20from%20social%20media%20posts&rft.jtitle=PloS%20one&rft.au=Merchant,%20Raina%20M&rft.date=2019-06-17&rft.volume=14&rft.issue=6&rft.spage=e0215476&rft.pages=e0215476-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0215476&rft_dat=%3Cgale_plos_%3EA589464485%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242106675&rft_id=info:pmid/31206534&rft_galeid=A589464485&rft_doaj_id=oai_doaj_org_article_3d1528f4d9d342ab88d5b8f67adf08af&rfr_iscdi=true