Effect of cyclic deformation on xenogeneic heart valve biomaterials

Glutaraldehyde-fixed bovine pericardium is currently the most popular biomaterial utilized in the creation of bioprosthetic heart valves. However, recent studies indicate that glutaraldehyde fixation results in calcification and structural valve deterioration, limiting the longevity of bioprosthetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-06, Vol.14 (6), p.e0214656-e0214656
Hauptverfasser: Dalgliesh, Ailsa J, Parvizi, Mojtaba, Noble, Christopher, Griffiths, Leigh G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0214656
container_issue 6
container_start_page e0214656
container_title PloS one
container_volume 14
creator Dalgliesh, Ailsa J
Parvizi, Mojtaba
Noble, Christopher
Griffiths, Leigh G
description Glutaraldehyde-fixed bovine pericardium is currently the most popular biomaterial utilized in the creation of bioprosthetic heart valves. However, recent studies indicate that glutaraldehyde fixation results in calcification and structural valve deterioration, limiting the longevity of bioprosthetic heart valves. Additionally, glutaraldehyde fixation renders the tissue incompatible with constructive recipient cellular repopulation, remodeling and growth. Use of unfixed xenogeneic biomaterials devoid of antigenic burden has potential to overcome the limitations of current glutaraldehyde-fixed biomaterials. Heart valves undergo billion cycles of opening and closing throughout the patient's lifetime. Therefore, understanding the response of unfixed tissues to cyclic loading is crucial to these in a heart valve leaflet configuration. In this manuscript we quantify the effect of cyclic deformation on cycle dependent strain, structural, compositional and mechanical properties of fixed and unfixed tissues. Glutaraldehyde-fixed bovine pericardium underwent marked cyclic dependent strain, resulting from significant changes in structure, composition and mechanical function of the material. Conversely, unfixed bovine pericardium underwent minimal strain and maintained its structure, composition and mechanical integrity. This manuscript demonstrates that unfixed bovine pericardium can withstand cyclic deformations equivalent to 6 months of in vivo heart valve leaflet performance.
doi_str_mv 10.1371/journal.pone.0214656
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2239663773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A588924150</galeid><doaj_id>oai_doaj_org_article_0d28d45e8d8841d4ac036f825d3348aa</doaj_id><sourcerecordid>A588924150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f70ff493d82c5da1e3499f0df59fe33403aa3a055a942f2b352e0294d506bca73</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3LX6D0QHBNGL1nzP5EZYyqqFhQW_bkOanLQp00k3mSm7_97Uzi4d2QtJICF5znvOSd6ieI3RDNMKf9qEPra6me1CCzNEMBNcPCnOsaRkKgiiT0_2Z8WLlDYIcVoL8bw4oxhLVlXovJhfOgemK4MrzZ1pvCktuBC3uvOhLfO8hTasoIV8swYdu3Kvmz2USx8yA9HrJr0snrm8wKthnRS_vlz-nH-bXl1_XcwvrqZGSNJNXYWcY5LamhhuNQbKpHTIOi4dUMoQ1ZpqxLmWjDiypJwAIpJZjsTS6IpOirdH3V0Tkhr6T4oQKoWgVUUzsTgSNuiN2kW_1fFOBe3V34MQVyq34E0DCllSW8ahtnXNsGXaICpcTbjNpdS5kknxecjWL7dgDbRd1M1IdHzT-rVahb3K_0Alr7PAh0EghpseUqe2PhloGt1C6A91My44EURk9N0_6OPdDdRK5wZ860LOaw6i6oLXtSQMc5Sp2SNUHha23mSzOJ_PRwEfRwGZ6eC2W-k-JbX48f3_2evfY_b9CZvN03TrFJr-4Kw0BtkRNDGkFME9PDJG6uD1-9dQB6-rwes57M3pBz0E3Zub_gHIAPgs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239663773</pqid></control><display><type>article</type><title>Effect of cyclic deformation on xenogeneic heart valve biomaterials</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dalgliesh, Ailsa J ; Parvizi, Mojtaba ; Noble, Christopher ; Griffiths, Leigh G</creator><contributor>Pelacho, Beatriz</contributor><creatorcontrib>Dalgliesh, Ailsa J ; Parvizi, Mojtaba ; Noble, Christopher ; Griffiths, Leigh G ; Pelacho, Beatriz</creatorcontrib><description>Glutaraldehyde-fixed bovine pericardium is currently the most popular biomaterial utilized in the creation of bioprosthetic heart valves. However, recent studies indicate that glutaraldehyde fixation results in calcification and structural valve deterioration, limiting the longevity of bioprosthetic heart valves. Additionally, glutaraldehyde fixation renders the tissue incompatible with constructive recipient cellular repopulation, remodeling and growth. Use of unfixed xenogeneic biomaterials devoid of antigenic burden has potential to overcome the limitations of current glutaraldehyde-fixed biomaterials. Heart valves undergo billion cycles of opening and closing throughout the patient's lifetime. Therefore, understanding the response of unfixed tissues to cyclic loading is crucial to these in a heart valve leaflet configuration. In this manuscript we quantify the effect of cyclic deformation on cycle dependent strain, structural, compositional and mechanical properties of fixed and unfixed tissues. Glutaraldehyde-fixed bovine pericardium underwent marked cyclic dependent strain, resulting from significant changes in structure, composition and mechanical function of the material. Conversely, unfixed bovine pericardium underwent minimal strain and maintained its structure, composition and mechanical integrity. This manuscript demonstrates that unfixed bovine pericardium can withstand cyclic deformations equivalent to 6 months of in vivo heart valve leaflet performance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0214656</identifier><identifier>PMID: 31194770</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antigens ; Artificial heart valves ; Beef cattle ; Biological products ; Biology and Life Sciences ; Biomaterials ; Biomechanical Phenomena - drug effects ; Biomedical materials ; Bioprosthesis ; Calcification ; Calcification (ectopic) ; Calcification (Physiology) ; Care and treatment ; Catheters ; Cattle ; Collagen ; Composition ; Cyclic loads ; Deformation ; Deformation effects ; Engineering and Technology ; Extracellular matrix ; Finite Element Analysis ; Fixation ; Glutaral - pharmacology ; Glutaraldehyde ; Health aspects ; Heart ; Heart valve diseases ; Heart Valve Prosthesis ; Heart valves ; Heart Valves - drug effects ; Heart Valves - physiology ; Laboratory animals ; Materials ; Mechanical properties ; Medicine and Health Sciences ; Organ Preservation - veterinary ; Patient outcomes ; Pericardium ; Physical Sciences ; Polymer crosslinking ; Repopulation ; Swine ; Tissue engineering ; Tissue Fixation ; Viscoelasticity</subject><ispartof>PloS one, 2019-06, Vol.14 (6), p.e0214656-e0214656</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Dalgliesh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Dalgliesh et al 2019 Dalgliesh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f70ff493d82c5da1e3499f0df59fe33403aa3a055a942f2b352e0294d506bca73</citedby><cites>FETCH-LOGICAL-c692t-f70ff493d82c5da1e3499f0df59fe33403aa3a055a942f2b352e0294d506bca73</cites><orcidid>0000-0001-6147-5972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31194770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pelacho, Beatriz</contributor><creatorcontrib>Dalgliesh, Ailsa J</creatorcontrib><creatorcontrib>Parvizi, Mojtaba</creatorcontrib><creatorcontrib>Noble, Christopher</creatorcontrib><creatorcontrib>Griffiths, Leigh G</creatorcontrib><title>Effect of cyclic deformation on xenogeneic heart valve biomaterials</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Glutaraldehyde-fixed bovine pericardium is currently the most popular biomaterial utilized in the creation of bioprosthetic heart valves. However, recent studies indicate that glutaraldehyde fixation results in calcification and structural valve deterioration, limiting the longevity of bioprosthetic heart valves. Additionally, glutaraldehyde fixation renders the tissue incompatible with constructive recipient cellular repopulation, remodeling and growth. Use of unfixed xenogeneic biomaterials devoid of antigenic burden has potential to overcome the limitations of current glutaraldehyde-fixed biomaterials. Heart valves undergo billion cycles of opening and closing throughout the patient's lifetime. Therefore, understanding the response of unfixed tissues to cyclic loading is crucial to these in a heart valve leaflet configuration. In this manuscript we quantify the effect of cyclic deformation on cycle dependent strain, structural, compositional and mechanical properties of fixed and unfixed tissues. Glutaraldehyde-fixed bovine pericardium underwent marked cyclic dependent strain, resulting from significant changes in structure, composition and mechanical function of the material. Conversely, unfixed bovine pericardium underwent minimal strain and maintained its structure, composition and mechanical integrity. This manuscript demonstrates that unfixed bovine pericardium can withstand cyclic deformations equivalent to 6 months of in vivo heart valve leaflet performance.</description><subject>Animals</subject><subject>Antigens</subject><subject>Artificial heart valves</subject><subject>Beef cattle</subject><subject>Biological products</subject><subject>Biology and Life Sciences</subject><subject>Biomaterials</subject><subject>Biomechanical Phenomena - drug effects</subject><subject>Biomedical materials</subject><subject>Bioprosthesis</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Calcification (Physiology)</subject><subject>Care and treatment</subject><subject>Catheters</subject><subject>Cattle</subject><subject>Collagen</subject><subject>Composition</subject><subject>Cyclic loads</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Engineering and Technology</subject><subject>Extracellular matrix</subject><subject>Finite Element Analysis</subject><subject>Fixation</subject><subject>Glutaral - pharmacology</subject><subject>Glutaraldehyde</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart valve diseases</subject><subject>Heart Valve Prosthesis</subject><subject>Heart valves</subject><subject>Heart Valves - drug effects</subject><subject>Heart Valves - physiology</subject><subject>Laboratory animals</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Organ Preservation - veterinary</subject><subject>Patient outcomes</subject><subject>Pericardium</subject><subject>Physical Sciences</subject><subject>Polymer crosslinking</subject><subject>Repopulation</subject><subject>Swine</subject><subject>Tissue engineering</subject><subject>Tissue Fixation</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3LX6D0QHBNGL1nzP5EZYyqqFhQW_bkOanLQp00k3mSm7_97Uzi4d2QtJICF5znvOSd6ieI3RDNMKf9qEPra6me1CCzNEMBNcPCnOsaRkKgiiT0_2Z8WLlDYIcVoL8bw4oxhLVlXovJhfOgemK4MrzZ1pvCktuBC3uvOhLfO8hTasoIV8swYdu3Kvmz2USx8yA9HrJr0snrm8wKthnRS_vlz-nH-bXl1_XcwvrqZGSNJNXYWcY5LamhhuNQbKpHTIOi4dUMoQ1ZpqxLmWjDiypJwAIpJZjsTS6IpOirdH3V0Tkhr6T4oQKoWgVUUzsTgSNuiN2kW_1fFOBe3V34MQVyq34E0DCllSW8ahtnXNsGXaICpcTbjNpdS5kknxecjWL7dgDbRd1M1IdHzT-rVahb3K_0Alr7PAh0EghpseUqe2PhloGt1C6A91My44EURk9N0_6OPdDdRK5wZ860LOaw6i6oLXtSQMc5Sp2SNUHha23mSzOJ_PRwEfRwGZ6eC2W-k-JbX48f3_2evfY_b9CZvN03TrFJr-4Kw0BtkRNDGkFME9PDJG6uD1-9dQB6-rwes57M3pBz0E3Zub_gHIAPgs</recordid><startdate>20190613</startdate><enddate>20190613</enddate><creator>Dalgliesh, Ailsa J</creator><creator>Parvizi, Mojtaba</creator><creator>Noble, Christopher</creator><creator>Griffiths, Leigh G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6147-5972</orcidid></search><sort><creationdate>20190613</creationdate><title>Effect of cyclic deformation on xenogeneic heart valve biomaterials</title><author>Dalgliesh, Ailsa J ; Parvizi, Mojtaba ; Noble, Christopher ; Griffiths, Leigh G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f70ff493d82c5da1e3499f0df59fe33403aa3a055a942f2b352e0294d506bca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Artificial heart valves</topic><topic>Beef cattle</topic><topic>Biological products</topic><topic>Biology and Life Sciences</topic><topic>Biomaterials</topic><topic>Biomechanical Phenomena - drug effects</topic><topic>Biomedical materials</topic><topic>Bioprosthesis</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Calcification (Physiology)</topic><topic>Care and treatment</topic><topic>Catheters</topic><topic>Cattle</topic><topic>Collagen</topic><topic>Composition</topic><topic>Cyclic loads</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Engineering and Technology</topic><topic>Extracellular matrix</topic><topic>Finite Element Analysis</topic><topic>Fixation</topic><topic>Glutaral - pharmacology</topic><topic>Glutaraldehyde</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart valve diseases</topic><topic>Heart Valve Prosthesis</topic><topic>Heart valves</topic><topic>Heart Valves - drug effects</topic><topic>Heart Valves - physiology</topic><topic>Laboratory animals</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Organ Preservation - veterinary</topic><topic>Patient outcomes</topic><topic>Pericardium</topic><topic>Physical Sciences</topic><topic>Polymer crosslinking</topic><topic>Repopulation</topic><topic>Swine</topic><topic>Tissue engineering</topic><topic>Tissue Fixation</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalgliesh, Ailsa J</creatorcontrib><creatorcontrib>Parvizi, Mojtaba</creatorcontrib><creatorcontrib>Noble, Christopher</creatorcontrib><creatorcontrib>Griffiths, Leigh G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalgliesh, Ailsa J</au><au>Parvizi, Mojtaba</au><au>Noble, Christopher</au><au>Griffiths, Leigh G</au><au>Pelacho, Beatriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of cyclic deformation on xenogeneic heart valve biomaterials</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-06-13</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>e0214656</spage><epage>e0214656</epage><pages>e0214656-e0214656</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Glutaraldehyde-fixed bovine pericardium is currently the most popular biomaterial utilized in the creation of bioprosthetic heart valves. However, recent studies indicate that glutaraldehyde fixation results in calcification and structural valve deterioration, limiting the longevity of bioprosthetic heart valves. Additionally, glutaraldehyde fixation renders the tissue incompatible with constructive recipient cellular repopulation, remodeling and growth. Use of unfixed xenogeneic biomaterials devoid of antigenic burden has potential to overcome the limitations of current glutaraldehyde-fixed biomaterials. Heart valves undergo billion cycles of opening and closing throughout the patient's lifetime. Therefore, understanding the response of unfixed tissues to cyclic loading is crucial to these in a heart valve leaflet configuration. In this manuscript we quantify the effect of cyclic deformation on cycle dependent strain, structural, compositional and mechanical properties of fixed and unfixed tissues. Glutaraldehyde-fixed bovine pericardium underwent marked cyclic dependent strain, resulting from significant changes in structure, composition and mechanical function of the material. Conversely, unfixed bovine pericardium underwent minimal strain and maintained its structure, composition and mechanical integrity. This manuscript demonstrates that unfixed bovine pericardium can withstand cyclic deformations equivalent to 6 months of in vivo heart valve leaflet performance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31194770</pmid><doi>10.1371/journal.pone.0214656</doi><tpages>e0214656</tpages><orcidid>https://orcid.org/0000-0001-6147-5972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-06, Vol.14 (6), p.e0214656-e0214656
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2239663773
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antigens
Artificial heart valves
Beef cattle
Biological products
Biology and Life Sciences
Biomaterials
Biomechanical Phenomena - drug effects
Biomedical materials
Bioprosthesis
Calcification
Calcification (ectopic)
Calcification (Physiology)
Care and treatment
Catheters
Cattle
Collagen
Composition
Cyclic loads
Deformation
Deformation effects
Engineering and Technology
Extracellular matrix
Finite Element Analysis
Fixation
Glutaral - pharmacology
Glutaraldehyde
Health aspects
Heart
Heart valve diseases
Heart Valve Prosthesis
Heart valves
Heart Valves - drug effects
Heart Valves - physiology
Laboratory animals
Materials
Mechanical properties
Medicine and Health Sciences
Organ Preservation - veterinary
Patient outcomes
Pericardium
Physical Sciences
Polymer crosslinking
Repopulation
Swine
Tissue engineering
Tissue Fixation
Viscoelasticity
title Effect of cyclic deformation on xenogeneic heart valve biomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20cyclic%20deformation%20on%20xenogeneic%20heart%20valve%20biomaterials&rft.jtitle=PloS%20one&rft.au=Dalgliesh,%20Ailsa%20J&rft.date=2019-06-13&rft.volume=14&rft.issue=6&rft.spage=e0214656&rft.epage=e0214656&rft.pages=e0214656-e0214656&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0214656&rft_dat=%3Cgale_plos_%3EA588924150%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239663773&rft_id=info:pmid/31194770&rft_galeid=A588924150&rft_doaj_id=oai_doaj_org_article_0d28d45e8d8841d4ac036f825d3348aa&rfr_iscdi=true