A multiobjective multi-view cluster ensemble technique: Application in patient subclassification
Recent high throughput omics technology has been used to assemble large biomedical omics datasets. Clustering of single omics data has proven invaluable in biomedical research. For the task of patient sub-classification, all the available omics data should be utilized combinedly rather than treating...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-05, Vol.14 (5), p.e0216904-e0216904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0216904 |
---|---|
container_issue | 5 |
container_start_page | e0216904 |
container_title | PloS one |
container_volume | 14 |
creator | Mitra, Sayantan Saha, Sriparna |
description | Recent high throughput omics technology has been used to assemble large biomedical omics datasets. Clustering of single omics data has proven invaluable in biomedical research. For the task of patient sub-classification, all the available omics data should be utilized combinedly rather than treating them individually. Clustering of multi-omics datasets has the potential to reveal deep insights. Here, we propose a late integration based multiobjective multi-view clustering algorithm which uses a special perturbation operator. Initially, a large number of diverse clustering solutions (called base partitionings) are generated for each omic dataset using four clustering algorithms, viz., k means, complete linkage, spectral and fast search clustering. These base partitionings of multi-omic datasets are suitably combined using a special perturbation operator. The perturbation operator uses an ensemble technique to generate new solutions from the base partitionings. The optimal combination of multiple partitioning solutions across different views is determined after optimizing the objective functions, namely conn-XB, for checking the quality of partitionings for different views, and agreement index, for checking agreement between the views. The search capability of a multiobjective simulated annealing approach, namely AMOSA is used for this purpose. Lastly, the non-dominated solutions of the different views are combined based on similarity to generate a single set of non-dominated solutions. The proposed algorithm is evaluated on 13 multi-view cancer datasets. An elaborated comparative study with several baseline methods and five state-of-the-art models is performed to show the effectiveness of the algorithm. |
doi_str_mv | 10.1371/journal.pone.0216904 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2229633014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A586423481</galeid><doaj_id>oai_doaj_org_article_d6d351f7118f456a98aa40cf5ddbc511</doaj_id><sourcerecordid>A586423481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-28beddbdbd7b433743d785d86663650a18e2c804d18a1c76679cd7f527a032e53</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkLlsIsfsZNwQFpVFFaqVInX1Tj2ZNcrJ05jZ4Fvj8Om1Qb1gHzw6zd_z4xnkuQ5RktMc_x254a-lXbZuRaWiGBeouxBcopLShacIPrwaH2SPPF-hxCjBeePkxOKMUFlRk6TH6u0GWwwrtqBCmYPh-1ib-BnquzgA_QptB6aykIaQG1bczPAu3TVddYoGS3b1LRpF1fQhtQPlbLSe1NPl0-TR7W0Hp5N81ny7fLD14tPi6vrj-uL1dVC8ZKEBSkq0LqKI68ySvOM6rxgOrrLKWdI4gKIKlCmcSGxyjnPS6XzmpFcIkqA0bPk5UG3s86LKTleEEJKTinCWSTWB0I7uRNdbxrZ_xZOGvH3wPUbIftglAWhuaYM1znGRZ0xLstCygypmkUXFcM4ar2fXhuqBrSKoffSzkTnN63Zio3bC86iMzSPAueTQO9iPn0QjfEKrJUtuGH0mxJMUYlJRF_9g94f3URtZAzAtLWL76pRVKxYwTNCs2L0e3kPFYeGxqhYSbWJ5zODNzODyAT4FTZy8F6sv3z-f_b6-5x9fcRuQdqw9c4OY8n4OZgdQNU773uo75KMkRgb4TYbYmwEMTVCNHtx_EF3RreVT_8AMaQDpw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229633014</pqid></control><display><type>article</type><title>A multiobjective multi-view cluster ensemble technique: Application in patient subclassification</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mitra, Sayantan ; Saha, Sriparna</creator><contributor>Li, Yang</contributor><creatorcontrib>Mitra, Sayantan ; Saha, Sriparna ; Li, Yang</creatorcontrib><description>Recent high throughput omics technology has been used to assemble large biomedical omics datasets. Clustering of single omics data has proven invaluable in biomedical research. For the task of patient sub-classification, all the available omics data should be utilized combinedly rather than treating them individually. Clustering of multi-omics datasets has the potential to reveal deep insights. Here, we propose a late integration based multiobjective multi-view clustering algorithm which uses a special perturbation operator. Initially, a large number of diverse clustering solutions (called base partitionings) are generated for each omic dataset using four clustering algorithms, viz., k means, complete linkage, spectral and fast search clustering. These base partitionings of multi-omic datasets are suitably combined using a special perturbation operator. The perturbation operator uses an ensemble technique to generate new solutions from the base partitionings. The optimal combination of multiple partitioning solutions across different views is determined after optimizing the objective functions, namely conn-XB, for checking the quality of partitionings for different views, and agreement index, for checking agreement between the views. The search capability of a multiobjective simulated annealing approach, namely AMOSA is used for this purpose. Lastly, the non-dominated solutions of the different views are combined based on similarity to generate a single set of non-dominated solutions. The proposed algorithm is evaluated on 13 multi-view cancer datasets. An elaborated comparative study with several baseline methods and five state-of-the-art models is performed to show the effectiveness of the algorithm.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0216904</identifier><identifier>PMID: 31120942</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Biology and Life Sciences ; Breast cancer ; Cancer ; Classification ; Cluster Analysis ; Clustering ; Comparative literature ; Comparative studies ; Computer science ; Computer simulation ; Databases, Factual ; Datasets ; DNA methylation ; Ecology and Environmental Sciences ; Electronic Data Processing ; Gene expression ; Genomics ; Humans ; Medical research ; Metabolomics ; Methods ; MicroRNAs ; Multiple objective analysis ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Optimization ; Patient Selection ; Physical Sciences ; Research and Analysis Methods ; RNA sequencing ; Simulated annealing ; State of the art ; Technology ; Validity</subject><ispartof>PloS one, 2019-05, Vol.14 (5), p.e0216904-e0216904</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Mitra, Saha. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Mitra, Saha 2019 Mitra, Saha</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-28beddbdbd7b433743d785d86663650a18e2c804d18a1c76679cd7f527a032e53</citedby><cites>FETCH-LOGICAL-c692t-28beddbdbd7b433743d785d86663650a18e2c804d18a1c76679cd7f527a032e53</cites><orcidid>0000-0001-8140-6499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31120942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Li, Yang</contributor><creatorcontrib>Mitra, Sayantan</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><title>A multiobjective multi-view cluster ensemble technique: Application in patient subclassification</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent high throughput omics technology has been used to assemble large biomedical omics datasets. Clustering of single omics data has proven invaluable in biomedical research. For the task of patient sub-classification, all the available omics data should be utilized combinedly rather than treating them individually. Clustering of multi-omics datasets has the potential to reveal deep insights. Here, we propose a late integration based multiobjective multi-view clustering algorithm which uses a special perturbation operator. Initially, a large number of diverse clustering solutions (called base partitionings) are generated for each omic dataset using four clustering algorithms, viz., k means, complete linkage, spectral and fast search clustering. These base partitionings of multi-omic datasets are suitably combined using a special perturbation operator. The perturbation operator uses an ensemble technique to generate new solutions from the base partitionings. The optimal combination of multiple partitioning solutions across different views is determined after optimizing the objective functions, namely conn-XB, for checking the quality of partitionings for different views, and agreement index, for checking agreement between the views. The search capability of a multiobjective simulated annealing approach, namely AMOSA is used for this purpose. Lastly, the non-dominated solutions of the different views are combined based on similarity to generate a single set of non-dominated solutions. The proposed algorithm is evaluated on 13 multi-view cancer datasets. An elaborated comparative study with several baseline methods and five state-of-the-art models is performed to show the effectiveness of the algorithm.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Comparative literature</subject><subject>Comparative studies</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>DNA methylation</subject><subject>Ecology and Environmental Sciences</subject><subject>Electronic Data Processing</subject><subject>Gene expression</subject><subject>Genomics</subject><subject>Humans</subject><subject>Medical research</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>MicroRNAs</subject><subject>Multiple objective analysis</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Optimization</subject><subject>Patient Selection</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>RNA sequencing</subject><subject>Simulated annealing</subject><subject>State of the art</subject><subject>Technology</subject><subject>Validity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkLlsIsfsZNwQFpVFFaqVInX1Tj2ZNcrJ05jZ4Fvj8Om1Qb1gHzw6zd_z4xnkuQ5RktMc_x254a-lXbZuRaWiGBeouxBcopLShacIPrwaH2SPPF-hxCjBeePkxOKMUFlRk6TH6u0GWwwrtqBCmYPh-1ib-BnquzgA_QptB6aykIaQG1bczPAu3TVddYoGS3b1LRpF1fQhtQPlbLSe1NPl0-TR7W0Hp5N81ny7fLD14tPi6vrj-uL1dVC8ZKEBSkq0LqKI68ySvOM6rxgOrrLKWdI4gKIKlCmcSGxyjnPS6XzmpFcIkqA0bPk5UG3s86LKTleEEJKTinCWSTWB0I7uRNdbxrZ_xZOGvH3wPUbIftglAWhuaYM1znGRZ0xLstCygypmkUXFcM4ar2fXhuqBrSKoffSzkTnN63Zio3bC86iMzSPAueTQO9iPn0QjfEKrJUtuGH0mxJMUYlJRF_9g94f3URtZAzAtLWL76pRVKxYwTNCs2L0e3kPFYeGxqhYSbWJ5zODNzODyAT4FTZy8F6sv3z-f_b6-5x9fcRuQdqw9c4OY8n4OZgdQNU773uo75KMkRgb4TYbYmwEMTVCNHtx_EF3RreVT_8AMaQDpw</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>Mitra, Sayantan</creator><creator>Saha, Sriparna</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8140-6499</orcidid></search><sort><creationdate>20190523</creationdate><title>A multiobjective multi-view cluster ensemble technique: Application in patient subclassification</title><author>Mitra, Sayantan ; Saha, Sriparna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-28beddbdbd7b433743d785d86663650a18e2c804d18a1c76679cd7f527a032e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Comparative literature</topic><topic>Comparative studies</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>DNA methylation</topic><topic>Ecology and Environmental Sciences</topic><topic>Electronic Data Processing</topic><topic>Gene expression</topic><topic>Genomics</topic><topic>Humans</topic><topic>Medical research</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>MicroRNAs</topic><topic>Multiple objective analysis</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Optimization</topic><topic>Patient Selection</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>RNA sequencing</topic><topic>Simulated annealing</topic><topic>State of the art</topic><topic>Technology</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Sayantan</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Sayantan</au><au>Saha, Sriparna</au><au>Li, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiobjective multi-view cluster ensemble technique: Application in patient subclassification</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-05-23</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>e0216904</spage><epage>e0216904</epage><pages>e0216904-e0216904</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent high throughput omics technology has been used to assemble large biomedical omics datasets. Clustering of single omics data has proven invaluable in biomedical research. For the task of patient sub-classification, all the available omics data should be utilized combinedly rather than treating them individually. Clustering of multi-omics datasets has the potential to reveal deep insights. Here, we propose a late integration based multiobjective multi-view clustering algorithm which uses a special perturbation operator. Initially, a large number of diverse clustering solutions (called base partitionings) are generated for each omic dataset using four clustering algorithms, viz., k means, complete linkage, spectral and fast search clustering. These base partitionings of multi-omic datasets are suitably combined using a special perturbation operator. The perturbation operator uses an ensemble technique to generate new solutions from the base partitionings. The optimal combination of multiple partitioning solutions across different views is determined after optimizing the objective functions, namely conn-XB, for checking the quality of partitionings for different views, and agreement index, for checking agreement between the views. The search capability of a multiobjective simulated annealing approach, namely AMOSA is used for this purpose. Lastly, the non-dominated solutions of the different views are combined based on similarity to generate a single set of non-dominated solutions. The proposed algorithm is evaluated on 13 multi-view cancer datasets. An elaborated comparative study with several baseline methods and five state-of-the-art models is performed to show the effectiveness of the algorithm.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31120942</pmid><doi>10.1371/journal.pone.0216904</doi><tpages>e0216904</tpages><orcidid>https://orcid.org/0000-0001-8140-6499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-05, Vol.14 (5), p.e0216904-e0216904 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2229633014 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial intelligence Biology and Life Sciences Breast cancer Cancer Classification Cluster Analysis Clustering Comparative literature Comparative studies Computer science Computer simulation Databases, Factual Datasets DNA methylation Ecology and Environmental Sciences Electronic Data Processing Gene expression Genomics Humans Medical research Metabolomics Methods MicroRNAs Multiple objective analysis Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Optimization Patient Selection Physical Sciences Research and Analysis Methods RNA sequencing Simulated annealing State of the art Technology Validity |
title | A multiobjective multi-view cluster ensemble technique: Application in patient subclassification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiobjective%20multi-view%20cluster%20ensemble%20technique:%20Application%20in%20patient%20subclassification&rft.jtitle=PloS%20one&rft.au=Mitra,%20Sayantan&rft.date=2019-05-23&rft.volume=14&rft.issue=5&rft.spage=e0216904&rft.epage=e0216904&rft.pages=e0216904-e0216904&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0216904&rft_dat=%3Cgale_plos_%3EA586423481%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229633014&rft_id=info:pmid/31120942&rft_galeid=A586423481&rft_doaj_id=oai_doaj_org_article_d6d351f7118f456a98aa40cf5ddbc511&rfr_iscdi=true |