Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum
The lipophilic electron-transport cofactor rhodoquinone (RQ) facilitates anaerobic metabolism in a variety of bacteria and selected eukaryotic organisms in hypoxic environments. We have shown that an intact rquA gene in Rhodospirillum rubrum is required for RQ production and efficient growth of the...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-05, Vol.14 (5), p.e0217281-e0217281 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0217281 |
---|---|
container_issue | 5 |
container_start_page | e0217281 |
container_title | PloS one |
container_volume | 14 |
creator | Campbell, Amanda R M Titus, Benjamin R Kuenzi, Madeline R Rodriguez-Perez, Fernando Brunsch, Alysha D L Schroll, Monica M Owen, Matthew C Cronk, Jeff D Anders, Kirk R Shepherd, Jennifer N |
description | The lipophilic electron-transport cofactor rhodoquinone (RQ) facilitates anaerobic metabolism in a variety of bacteria and selected eukaryotic organisms in hypoxic environments. We have shown that an intact rquA gene in Rhodospirillum rubrum is required for RQ production and efficient growth of the bacterium under anoxic conditions. While the explicit details of RQ biosynthesis have yet to be fully delineated, ubiquinone (Q) is a required precursor to RQ in R. rubrum, and the RquA gene product is homologous to a class I methyltransferase. In order to identify any additional requirements for RQ biosynthesis or factors influencing RQ production in R. rubrum, we performed transcriptome analysis to identify differentially expressed genes in anoxic, illuminated R. rubrum cultures, compared with those aerobically grown in the dark. To further select target genes, we employed a bioinformatics approach to assess the likelihood that a given differentially expressed gene under anoxic conditions may also have a direct role in RQ production or regulation of its levels in vivo. Having thus compiled a list of candidate genes, nine were chosen for further study by generation of knockout strains. RQ and Q levels were quantified using liquid chromatography-mass spectrometry, and rquA gene expression was measured using the real-time quantitative polymerase chain reaction. In one case, Q and RQ levels were decreased relative to wild type; in another case, the opposite effect was observed. These results comport with the crucial roles of rquA and Q in RQ biosynthesis, and reveal the existence of potential modulators of RQ levels in R. rubrum. |
doi_str_mv | 10.1371/journal.pone.0217281 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2228655893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A586194681</galeid><doaj_id>oai_doaj_org_article_9c4047d86fb743b7bf606157e44e8c82</doaj_id><sourcerecordid>A586194681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-af4e8aa7b7e41956936700a1467c40be249812f82e177dfc2cba921ca9863a983</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLm0ubwIy-JlYGFhvbyGNE3brGkyJu3ofHtTp7tMZR-kkIbT3_mfW0-WPYdgDTGF7278GJy06613eg0QpIjBB9kp5BitCAL44dH9JHsS4w0AJWaEPM5OMIQQlQSfZj82bqfjYFo5GO9y3-RKutrUctB5q52OuXE7b3e6Tpd86HQeOl_7n6NxKW5eGR_3LpkHo_KtHLpfcj-B1xMUtyYYa8c-D2MVxv5p9qiRNupn8_ss-_bxw9eLz6vLq0-bi_PLlSIcDSvZFJpJSSuqC8hLwjGhAEhYEKoKUGlUcAZRw5CGlNaNQqqSHEElOSM4Hfgse3nQ3VofxdynKBBCjJQl4zgRmwNRe3kjtsH0MuyFl0b8NfjQChlSSVYLnmIWtGakqWiBK1o1BBBYptxSloqhpPV-jjZWva6VdkOQdiG6_OJMJ1q_E6REHIApmTezQEh9TcMQvYlKWyud9uOUN0aAM1RM6Kt_0Purm6lWpgKMa3yKqyZRcV4yAnlBGEzU-h4qPbXujUrDbUyyLxzeLhwSM-jfQyvHGMXmy_X_s1ffl-zrI7bT0g5d9Hacfsi4BIsDqIKPMejmrskQiGknbrshpp0Q804ktxfHA7pzul0C_AegBgfv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228655893</pqid></control><display><type>article</type><title>Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum</title><source>PLoS</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Campbell, Amanda R M ; Titus, Benjamin R ; Kuenzi, Madeline R ; Rodriguez-Perez, Fernando ; Brunsch, Alysha D L ; Schroll, Monica M ; Owen, Matthew C ; Cronk, Jeff D ; Anders, Kirk R ; Shepherd, Jennifer N</creator><creatorcontrib>Campbell, Amanda R M ; Titus, Benjamin R ; Kuenzi, Madeline R ; Rodriguez-Perez, Fernando ; Brunsch, Alysha D L ; Schroll, Monica M ; Owen, Matthew C ; Cronk, Jeff D ; Anders, Kirk R ; Shepherd, Jennifer N</creatorcontrib><description>The lipophilic electron-transport cofactor rhodoquinone (RQ) facilitates anaerobic metabolism in a variety of bacteria and selected eukaryotic organisms in hypoxic environments. We have shown that an intact rquA gene in Rhodospirillum rubrum is required for RQ production and efficient growth of the bacterium under anoxic conditions. While the explicit details of RQ biosynthesis have yet to be fully delineated, ubiquinone (Q) is a required precursor to RQ in R. rubrum, and the RquA gene product is homologous to a class I methyltransferase. In order to identify any additional requirements for RQ biosynthesis or factors influencing RQ production in R. rubrum, we performed transcriptome analysis to identify differentially expressed genes in anoxic, illuminated R. rubrum cultures, compared with those aerobically grown in the dark. To further select target genes, we employed a bioinformatics approach to assess the likelihood that a given differentially expressed gene under anoxic conditions may also have a direct role in RQ production or regulation of its levels in vivo. Having thus compiled a list of candidate genes, nine were chosen for further study by generation of knockout strains. RQ and Q levels were quantified using liquid chromatography-mass spectrometry, and rquA gene expression was measured using the real-time quantitative polymerase chain reaction. In one case, Q and RQ levels were decreased relative to wild type; in another case, the opposite effect was observed. These results comport with the crucial roles of rquA and Q in RQ biosynthesis, and reveal the existence of potential modulators of RQ levels in R. rubrum.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0217281</identifier><identifier>PMID: 31112563</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anoxic conditions ; Backup software ; Bacteria ; Base Sequence ; Biochemistry ; Bioinformatics ; Biology and Life Sciences ; Biosynthesis ; Biosynthetic Pathways - genetics ; Chromatography ; Chromatography, Liquid ; Computational biology ; DNA, Bacterial - genetics ; E coli ; Electron transport ; Gene Expression ; Gene Knockout Techniques ; Genes ; Genes, Bacterial ; Genetic aspects ; Homology ; Hypoxia ; Lipophilic ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Methyltransferase ; Microbiological synthesis ; Modulators ; Phylogenetics ; Physical Sciences ; Physiological aspects ; Polymerase chain reaction ; Proteobacteria ; Quinones ; Research and Analysis Methods ; Rhodospirillum rubrum ; Rhodospirillum rubrum - genetics ; Rhodospirillum rubrum - metabolism ; Spectrometry, Mass, Electrospray Ionization ; Spectroscopy ; Transferases ; Ubiquinone ; Ubiquinone - analogs & derivatives ; Ubiquinone - biosynthesis ; Ubiquinone - genetics</subject><ispartof>PloS one, 2019-05, Vol.14 (5), p.e0217281-e0217281</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Campbell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Campbell et al 2019 Campbell et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-af4e8aa7b7e41956936700a1467c40be249812f82e177dfc2cba921ca9863a983</citedby><cites>FETCH-LOGICAL-c692t-af4e8aa7b7e41956936700a1467c40be249812f82e177dfc2cba921ca9863a983</cites><orcidid>0000-0002-6926-6777 ; 0000-0002-4922-5011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31112563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, Amanda R M</creatorcontrib><creatorcontrib>Titus, Benjamin R</creatorcontrib><creatorcontrib>Kuenzi, Madeline R</creatorcontrib><creatorcontrib>Rodriguez-Perez, Fernando</creatorcontrib><creatorcontrib>Brunsch, Alysha D L</creatorcontrib><creatorcontrib>Schroll, Monica M</creatorcontrib><creatorcontrib>Owen, Matthew C</creatorcontrib><creatorcontrib>Cronk, Jeff D</creatorcontrib><creatorcontrib>Anders, Kirk R</creatorcontrib><creatorcontrib>Shepherd, Jennifer N</creatorcontrib><title>Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The lipophilic electron-transport cofactor rhodoquinone (RQ) facilitates anaerobic metabolism in a variety of bacteria and selected eukaryotic organisms in hypoxic environments. We have shown that an intact rquA gene in Rhodospirillum rubrum is required for RQ production and efficient growth of the bacterium under anoxic conditions. While the explicit details of RQ biosynthesis have yet to be fully delineated, ubiquinone (Q) is a required precursor to RQ in R. rubrum, and the RquA gene product is homologous to a class I methyltransferase. In order to identify any additional requirements for RQ biosynthesis or factors influencing RQ production in R. rubrum, we performed transcriptome analysis to identify differentially expressed genes in anoxic, illuminated R. rubrum cultures, compared with those aerobically grown in the dark. To further select target genes, we employed a bioinformatics approach to assess the likelihood that a given differentially expressed gene under anoxic conditions may also have a direct role in RQ production or regulation of its levels in vivo. Having thus compiled a list of candidate genes, nine were chosen for further study by generation of knockout strains. RQ and Q levels were quantified using liquid chromatography-mass spectrometry, and rquA gene expression was measured using the real-time quantitative polymerase chain reaction. In one case, Q and RQ levels were decreased relative to wild type; in another case, the opposite effect was observed. These results comport with the crucial roles of rquA and Q in RQ biosynthesis, and reveal the existence of potential modulators of RQ levels in R. rubrum.</description><subject>Anoxic conditions</subject><subject>Backup software</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Chromatography</subject><subject>Chromatography, Liquid</subject><subject>Computational biology</subject><subject>DNA, Bacterial - genetics</subject><subject>E coli</subject><subject>Electron transport</subject><subject>Gene Expression</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic aspects</subject><subject>Homology</subject><subject>Hypoxia</subject><subject>Lipophilic</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Methyltransferase</subject><subject>Microbiological synthesis</subject><subject>Modulators</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polymerase chain reaction</subject><subject>Proteobacteria</subject><subject>Quinones</subject><subject>Research and Analysis Methods</subject><subject>Rhodospirillum rubrum</subject><subject>Rhodospirillum rubrum - genetics</subject><subject>Rhodospirillum rubrum - metabolism</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Spectroscopy</subject><subject>Transferases</subject><subject>Ubiquinone</subject><subject>Ubiquinone - analogs & derivatives</subject><subject>Ubiquinone - biosynthesis</subject><subject>Ubiquinone - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLm0ubwIy-JlYGFhvbyGNE3brGkyJu3ofHtTp7tMZR-kkIbT3_mfW0-WPYdgDTGF7278GJy06613eg0QpIjBB9kp5BitCAL44dH9JHsS4w0AJWaEPM5OMIQQlQSfZj82bqfjYFo5GO9y3-RKutrUctB5q52OuXE7b3e6Tpd86HQeOl_7n6NxKW5eGR_3LpkHo_KtHLpfcj-B1xMUtyYYa8c-D2MVxv5p9qiRNupn8_ss-_bxw9eLz6vLq0-bi_PLlSIcDSvZFJpJSSuqC8hLwjGhAEhYEKoKUGlUcAZRw5CGlNaNQqqSHEElOSM4Hfgse3nQ3VofxdynKBBCjJQl4zgRmwNRe3kjtsH0MuyFl0b8NfjQChlSSVYLnmIWtGakqWiBK1o1BBBYptxSloqhpPV-jjZWva6VdkOQdiG6_OJMJ1q_E6REHIApmTezQEh9TcMQvYlKWyud9uOUN0aAM1RM6Kt_0Purm6lWpgKMa3yKqyZRcV4yAnlBGEzU-h4qPbXujUrDbUyyLxzeLhwSM-jfQyvHGMXmy_X_s1ffl-zrI7bT0g5d9Hacfsi4BIsDqIKPMejmrskQiGknbrshpp0Q804ktxfHA7pzul0C_AegBgfv</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Campbell, Amanda R M</creator><creator>Titus, Benjamin R</creator><creator>Kuenzi, Madeline R</creator><creator>Rodriguez-Perez, Fernando</creator><creator>Brunsch, Alysha D L</creator><creator>Schroll, Monica M</creator><creator>Owen, Matthew C</creator><creator>Cronk, Jeff D</creator><creator>Anders, Kirk R</creator><creator>Shepherd, Jennifer N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6926-6777</orcidid><orcidid>https://orcid.org/0000-0002-4922-5011</orcidid></search><sort><creationdate>20190521</creationdate><title>Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum</title><author>Campbell, Amanda R M ; Titus, Benjamin R ; Kuenzi, Madeline R ; Rodriguez-Perez, Fernando ; Brunsch, Alysha D L ; Schroll, Monica M ; Owen, Matthew C ; Cronk, Jeff D ; Anders, Kirk R ; Shepherd, Jennifer N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-af4e8aa7b7e41956936700a1467c40be249812f82e177dfc2cba921ca9863a983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anoxic conditions</topic><topic>Backup software</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Chromatography</topic><topic>Chromatography, Liquid</topic><topic>Computational biology</topic><topic>DNA, Bacterial - genetics</topic><topic>E coli</topic><topic>Electron transport</topic><topic>Gene Expression</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic aspects</topic><topic>Homology</topic><topic>Hypoxia</topic><topic>Lipophilic</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Methyltransferase</topic><topic>Microbiological synthesis</topic><topic>Modulators</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polymerase chain reaction</topic><topic>Proteobacteria</topic><topic>Quinones</topic><topic>Research and Analysis Methods</topic><topic>Rhodospirillum rubrum</topic><topic>Rhodospirillum rubrum - genetics</topic><topic>Rhodospirillum rubrum - metabolism</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Spectroscopy</topic><topic>Transferases</topic><topic>Ubiquinone</topic><topic>Ubiquinone - analogs & derivatives</topic><topic>Ubiquinone - biosynthesis</topic><topic>Ubiquinone - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Amanda R M</creatorcontrib><creatorcontrib>Titus, Benjamin R</creatorcontrib><creatorcontrib>Kuenzi, Madeline R</creatorcontrib><creatorcontrib>Rodriguez-Perez, Fernando</creatorcontrib><creatorcontrib>Brunsch, Alysha D L</creatorcontrib><creatorcontrib>Schroll, Monica M</creatorcontrib><creatorcontrib>Owen, Matthew C</creatorcontrib><creatorcontrib>Cronk, Jeff D</creatorcontrib><creatorcontrib>Anders, Kirk R</creatorcontrib><creatorcontrib>Shepherd, Jennifer N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Amanda R M</au><au>Titus, Benjamin R</au><au>Kuenzi, Madeline R</au><au>Rodriguez-Perez, Fernando</au><au>Brunsch, Alysha D L</au><au>Schroll, Monica M</au><au>Owen, Matthew C</au><au>Cronk, Jeff D</au><au>Anders, Kirk R</au><au>Shepherd, Jennifer N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>e0217281</spage><epage>e0217281</epage><pages>e0217281-e0217281</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The lipophilic electron-transport cofactor rhodoquinone (RQ) facilitates anaerobic metabolism in a variety of bacteria and selected eukaryotic organisms in hypoxic environments. We have shown that an intact rquA gene in Rhodospirillum rubrum is required for RQ production and efficient growth of the bacterium under anoxic conditions. While the explicit details of RQ biosynthesis have yet to be fully delineated, ubiquinone (Q) is a required precursor to RQ in R. rubrum, and the RquA gene product is homologous to a class I methyltransferase. In order to identify any additional requirements for RQ biosynthesis or factors influencing RQ production in R. rubrum, we performed transcriptome analysis to identify differentially expressed genes in anoxic, illuminated R. rubrum cultures, compared with those aerobically grown in the dark. To further select target genes, we employed a bioinformatics approach to assess the likelihood that a given differentially expressed gene under anoxic conditions may also have a direct role in RQ production or regulation of its levels in vivo. Having thus compiled a list of candidate genes, nine were chosen for further study by generation of knockout strains. RQ and Q levels were quantified using liquid chromatography-mass spectrometry, and rquA gene expression was measured using the real-time quantitative polymerase chain reaction. In one case, Q and RQ levels were decreased relative to wild type; in another case, the opposite effect was observed. These results comport with the crucial roles of rquA and Q in RQ biosynthesis, and reveal the existence of potential modulators of RQ levels in R. rubrum.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31112563</pmid><doi>10.1371/journal.pone.0217281</doi><tpages>e0217281</tpages><orcidid>https://orcid.org/0000-0002-6926-6777</orcidid><orcidid>https://orcid.org/0000-0002-4922-5011</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-05, Vol.14 (5), p.e0217281-e0217281 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2228655893 |
source | PLoS; MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Anoxic conditions Backup software Bacteria Base Sequence Biochemistry Bioinformatics Biology and Life Sciences Biosynthesis Biosynthetic Pathways - genetics Chromatography Chromatography, Liquid Computational biology DNA, Bacterial - genetics E coli Electron transport Gene Expression Gene Knockout Techniques Genes Genes, Bacterial Genetic aspects Homology Hypoxia Lipophilic Liquid chromatography Mass spectrometry Mass spectroscopy Metabolism Methyltransferase Microbiological synthesis Modulators Phylogenetics Physical Sciences Physiological aspects Polymerase chain reaction Proteobacteria Quinones Research and Analysis Methods Rhodospirillum rubrum Rhodospirillum rubrum - genetics Rhodospirillum rubrum - metabolism Spectrometry, Mass, Electrospray Ionization Spectroscopy Transferases Ubiquinone Ubiquinone - analogs & derivatives Ubiquinone - biosynthesis Ubiquinone - genetics |
title | Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20candidate%20genes%20involved%20in%20the%20rhodoquinone%20biosynthetic%20pathway%20in%20Rhodospirillum%20rubrum&rft.jtitle=PloS%20one&rft.au=Campbell,%20Amanda%20R%20M&rft.date=2019-05-21&rft.volume=14&rft.issue=5&rft.spage=e0217281&rft.epage=e0217281&rft.pages=e0217281-e0217281&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0217281&rft_dat=%3Cgale_plos_%3EA586194681%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228655893&rft_id=info:pmid/31112563&rft_galeid=A586194681&rft_doaj_id=oai_doaj_org_article_9c4047d86fb743b7bf606157e44e8c82&rfr_iscdi=true |