Hypothalamic transcriptome analysis reveals the neuroendocrine mechanisms in controlling broodiness of Muscovy duck (Cairina moschata)

Broodiness, one of the maternal behaviors and instincts for natural breeding in birds, is an interesting topic in reproductive biology. Broodiness in poultry is characterized by persistent nesting, usually associated with cessation of egg laying. The study of avian broodiness is essential for bird c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-05, Vol.14 (5), p.e0207050-e0207050
Hauptverfasser: Ye, Pengfei, Li, Min, Liao, Wang, Ge, Kai, Jin, Sihua, Zhang, Cheng, Chen, Xingyong, Geng, Zhaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0207050
container_issue 5
container_start_page e0207050
container_title PloS one
container_volume 14
creator Ye, Pengfei
Li, Min
Liao, Wang
Ge, Kai
Jin, Sihua
Zhang, Cheng
Chen, Xingyong
Geng, Zhaoyu
description Broodiness, one of the maternal behaviors and instincts for natural breeding in birds, is an interesting topic in reproductive biology. Broodiness in poultry is characterized by persistent nesting, usually associated with cessation of egg laying. The study of avian broodiness is essential for bird conservation breeding and commercial poultry industry. In this study, we examined the hypothalamus transcriptome of Muscovy duck in three reproductive stages, including egg-laying anaphase (LA), brooding prophase (BP) and brooding metaphase (BM). Differences in gene expression during the transition from egg-laying to broodiness were examined, and 155, 379, 292 differently expressed genes (DEGs) were obtained by pairwise comparisons of LA-vs-BP, LA-vs-BM and BP-vs-BM, respectively (fold change≥1.5, P < 0.05). Gene Ontology Term (GO) enrichment analysis suggested a possible role of oxidative stress in the hypothalamus might invoke reproductive costs that potentially change genes expression. KEGG analysis revealed glutamatergic synapse, dopaminergic synapse, serotonergic synapse and GABAergic synapse pathway were significantly enriched, and regulator genes were identified. Eight gene expression patterns were illustrated by trend analysis and further clustered into three clusters. Additional six hub genes were identified through combining trend analysis and protein-protein interaction (PPI) analysis. Our results suggested that the cyclical mechanisms of reproductive function conversion include effects of oxidative stress, biosynthesis of neurotransmitters or their receptors, and interactions between glucocorticoids and thyroid hormones and regulatory genes. These candidate genes and biological pathways may be used as targets for artificial manipulation and marker-assisted breeding in the reproductive behavior.
doi_str_mv 10.1371/journal.pone.0207050
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2222682804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584928667</galeid><doaj_id>oai_doaj_org_article_6ebceaef149242df9f62b3da7a1028d1</doaj_id><sourcerecordid>A584928667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ba76700558fb53e40ade73c92d74bd3738bacca1bc1b0ba054b829551f2f34a63</originalsourceid><addsrcrecordid>eNqNk8tu00AUhi0EoiXwBghGQkLtImEuvm6QqghopKJK3Laj4_E4nmDPpDN2RV6A5-aEuFWMusBe2Bp__398blH0ktEFExl7t3GDt9Auts7qBeU0owl9FJ2yQvB5yql4fPR-Ej0LYUNpIvI0fRqdCEYzRvPiNPp9udu6voEWOqNI78EG5c22d50mgPa7YALx-lZDG0jfaGL14J22lUPMatJp1YA1oQvEWKKc7b1rW2PXpPTOVYiEQFxNPg9BudsdqQb1k5wtwaAaSOcCyns4fx49qTGCfjE-Z9H3jx--LS_nV9efVsuLq7lKC97PS8jSDNNI8rpMhI4pVDoTquBVFpeVyEReglLASsVKWgJN4jLnRZKwmtcihlTMotcH323rghxLGCTHK815TmMkVgeicrCRW2868DvpwMi_B86vJfjeqFbLVJdKg65ZXPCYV3VRp7wUFWTAKM8rhl7vx2hD2elKaawOtBPT6RdrGrl2tzJNsDnYt1l0Nhp4dzPo0MvOBKXbFqx2w_6_Bfa4iFmG6Jt_0IezG6k1YALG1g7jqr2pvEhyzAPnY--1eIDCu9I4JThvtcHzieB8ItjPgf7Vr2EIQa6-fvl_9vrHlH17xDY4hH0TXDv0xtkwBeMDqLwLwev6vsiMyv263FVD7tdFjuuCslfHDboX3e2H-AN3axN1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222682804</pqid></control><display><type>article</type><title>Hypothalamic transcriptome analysis reveals the neuroendocrine mechanisms in controlling broodiness of Muscovy duck (Cairina moschata)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ye, Pengfei ; Li, Min ; Liao, Wang ; Ge, Kai ; Jin, Sihua ; Zhang, Cheng ; Chen, Xingyong ; Geng, Zhaoyu</creator><creatorcontrib>Ye, Pengfei ; Li, Min ; Liao, Wang ; Ge, Kai ; Jin, Sihua ; Zhang, Cheng ; Chen, Xingyong ; Geng, Zhaoyu</creatorcontrib><description>Broodiness, one of the maternal behaviors and instincts for natural breeding in birds, is an interesting topic in reproductive biology. Broodiness in poultry is characterized by persistent nesting, usually associated with cessation of egg laying. The study of avian broodiness is essential for bird conservation breeding and commercial poultry industry. In this study, we examined the hypothalamus transcriptome of Muscovy duck in three reproductive stages, including egg-laying anaphase (LA), brooding prophase (BP) and brooding metaphase (BM). Differences in gene expression during the transition from egg-laying to broodiness were examined, and 155, 379, 292 differently expressed genes (DEGs) were obtained by pairwise comparisons of LA-vs-BP, LA-vs-BM and BP-vs-BM, respectively (fold change≥1.5, P &lt; 0.05). Gene Ontology Term (GO) enrichment analysis suggested a possible role of oxidative stress in the hypothalamus might invoke reproductive costs that potentially change genes expression. KEGG analysis revealed glutamatergic synapse, dopaminergic synapse, serotonergic synapse and GABAergic synapse pathway were significantly enriched, and regulator genes were identified. Eight gene expression patterns were illustrated by trend analysis and further clustered into three clusters. Additional six hub genes were identified through combining trend analysis and protein-protein interaction (PPI) analysis. Our results suggested that the cyclical mechanisms of reproductive function conversion include effects of oxidative stress, biosynthesis of neurotransmitters or their receptors, and interactions between glucocorticoids and thyroid hormones and regulatory genes. These candidate genes and biological pathways may be used as targets for artificial manipulation and marker-assisted breeding in the reproductive behavior.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0207050</identifier><identifier>PMID: 31071089</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anaphase ; Animal behavior ; Animal sciences ; Animals ; Aquatic birds ; Biochemistry ; Biology and Life Sciences ; Biosynthesis ; Birds ; Brain ; Breeding ; Chickens ; Computational Biology - methods ; Conservation ; Cost analysis ; Dopamine receptors ; Ducks ; Egg laying ; Endocrine system ; Female ; GABA ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Ontology ; Gene Regulatory Networks ; Genes ; Genetic aspects ; Glucocorticoids ; Glutamatergic transmission ; Health aspects ; Hormones ; Hypothalamus ; Hypothalamus - metabolism ; Laboratories ; Livestock ; Medicine and Health Sciences ; Metaphase ; Nesting ; Neurosecretory Systems - metabolism ; Neurotransmitters ; Oxidative stress ; Peptides ; Physical Sciences ; Physiology ; Poultry ; Principal Component Analysis ; Prophase ; Protein interaction ; Protein Interaction Mapping ; Protein Interaction Maps ; Protein-protein interactions ; Proteins ; Receptors ; Reproducibility of Results ; Reproductive behavior ; Research and analysis methods ; Sexual Behavior, Animal ; Steroids (Organic compounds) ; Synapses ; Thyroid ; Thyroid hormones ; Transcriptome ; Trend analysis ; Wildlife conservation ; Zoology</subject><ispartof>PloS one, 2019-05, Vol.14 (5), p.e0207050-e0207050</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Ye et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Ye et al 2019 Ye et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ba76700558fb53e40ade73c92d74bd3738bacca1bc1b0ba054b829551f2f34a63</citedby><cites>FETCH-LOGICAL-c692t-ba76700558fb53e40ade73c92d74bd3738bacca1bc1b0ba054b829551f2f34a63</cites><orcidid>0000-0002-0242-7222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31071089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Pengfei</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Liao, Wang</creatorcontrib><creatorcontrib>Ge, Kai</creatorcontrib><creatorcontrib>Jin, Sihua</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Chen, Xingyong</creatorcontrib><creatorcontrib>Geng, Zhaoyu</creatorcontrib><title>Hypothalamic transcriptome analysis reveals the neuroendocrine mechanisms in controlling broodiness of Muscovy duck (Cairina moschata)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Broodiness, one of the maternal behaviors and instincts for natural breeding in birds, is an interesting topic in reproductive biology. Broodiness in poultry is characterized by persistent nesting, usually associated with cessation of egg laying. The study of avian broodiness is essential for bird conservation breeding and commercial poultry industry. In this study, we examined the hypothalamus transcriptome of Muscovy duck in three reproductive stages, including egg-laying anaphase (LA), brooding prophase (BP) and brooding metaphase (BM). Differences in gene expression during the transition from egg-laying to broodiness were examined, and 155, 379, 292 differently expressed genes (DEGs) were obtained by pairwise comparisons of LA-vs-BP, LA-vs-BM and BP-vs-BM, respectively (fold change≥1.5, P &lt; 0.05). Gene Ontology Term (GO) enrichment analysis suggested a possible role of oxidative stress in the hypothalamus might invoke reproductive costs that potentially change genes expression. KEGG analysis revealed glutamatergic synapse, dopaminergic synapse, serotonergic synapse and GABAergic synapse pathway were significantly enriched, and regulator genes were identified. Eight gene expression patterns were illustrated by trend analysis and further clustered into three clusters. Additional six hub genes were identified through combining trend analysis and protein-protein interaction (PPI) analysis. Our results suggested that the cyclical mechanisms of reproductive function conversion include effects of oxidative stress, biosynthesis of neurotransmitters or their receptors, and interactions between glucocorticoids and thyroid hormones and regulatory genes. These candidate genes and biological pathways may be used as targets for artificial manipulation and marker-assisted breeding in the reproductive behavior.</description><subject>Anaphase</subject><subject>Animal behavior</subject><subject>Animal sciences</subject><subject>Animals</subject><subject>Aquatic birds</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Birds</subject><subject>Brain</subject><subject>Breeding</subject><subject>Chickens</subject><subject>Computational Biology - methods</subject><subject>Conservation</subject><subject>Cost analysis</subject><subject>Dopamine receptors</subject><subject>Ducks</subject><subject>Egg laying</subject><subject>Endocrine system</subject><subject>Female</subject><subject>GABA</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Ontology</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glucocorticoids</subject><subject>Glutamatergic transmission</subject><subject>Health aspects</subject><subject>Hormones</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>Laboratories</subject><subject>Livestock</subject><subject>Medicine and Health Sciences</subject><subject>Metaphase</subject><subject>Nesting</subject><subject>Neurosecretory Systems - metabolism</subject><subject>Neurotransmitters</subject><subject>Oxidative stress</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Poultry</subject><subject>Principal Component Analysis</subject><subject>Prophase</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping</subject><subject>Protein Interaction Maps</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Reproducibility of Results</subject><subject>Reproductive behavior</subject><subject>Research and analysis methods</subject><subject>Sexual Behavior, Animal</subject><subject>Steroids (Organic compounds)</subject><subject>Synapses</subject><subject>Thyroid</subject><subject>Thyroid hormones</subject><subject>Transcriptome</subject><subject>Trend analysis</subject><subject>Wildlife conservation</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu00AUhi0EoiXwBghGQkLtImEuvm6QqghopKJK3Laj4_E4nmDPpDN2RV6A5-aEuFWMusBe2Bp__398blH0ktEFExl7t3GDt9Auts7qBeU0owl9FJ2yQvB5yql4fPR-Ej0LYUNpIvI0fRqdCEYzRvPiNPp9udu6voEWOqNI78EG5c22d50mgPa7YALx-lZDG0jfaGL14J22lUPMatJp1YA1oQvEWKKc7b1rW2PXpPTOVYiEQFxNPg9BudsdqQb1k5wtwaAaSOcCyns4fx49qTGCfjE-Z9H3jx--LS_nV9efVsuLq7lKC97PS8jSDNNI8rpMhI4pVDoTquBVFpeVyEReglLASsVKWgJN4jLnRZKwmtcihlTMotcH323rghxLGCTHK815TmMkVgeicrCRW2868DvpwMi_B86vJfjeqFbLVJdKg65ZXPCYV3VRp7wUFWTAKM8rhl7vx2hD2elKaawOtBPT6RdrGrl2tzJNsDnYt1l0Nhp4dzPo0MvOBKXbFqx2w_6_Bfa4iFmG6Jt_0IezG6k1YALG1g7jqr2pvEhyzAPnY--1eIDCu9I4JThvtcHzieB8ItjPgf7Vr2EIQa6-fvl_9vrHlH17xDY4hH0TXDv0xtkwBeMDqLwLwev6vsiMyv263FVD7tdFjuuCslfHDboX3e2H-AN3axN1</recordid><startdate>20190509</startdate><enddate>20190509</enddate><creator>Ye, Pengfei</creator><creator>Li, Min</creator><creator>Liao, Wang</creator><creator>Ge, Kai</creator><creator>Jin, Sihua</creator><creator>Zhang, Cheng</creator><creator>Chen, Xingyong</creator><creator>Geng, Zhaoyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0242-7222</orcidid></search><sort><creationdate>20190509</creationdate><title>Hypothalamic transcriptome analysis reveals the neuroendocrine mechanisms in controlling broodiness of Muscovy duck (Cairina moschata)</title><author>Ye, Pengfei ; Li, Min ; Liao, Wang ; Ge, Kai ; Jin, Sihua ; Zhang, Cheng ; Chen, Xingyong ; Geng, Zhaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ba76700558fb53e40ade73c92d74bd3738bacca1bc1b0ba054b829551f2f34a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anaphase</topic><topic>Animal behavior</topic><topic>Animal sciences</topic><topic>Animals</topic><topic>Aquatic birds</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Birds</topic><topic>Brain</topic><topic>Breeding</topic><topic>Chickens</topic><topic>Computational Biology - methods</topic><topic>Conservation</topic><topic>Cost analysis</topic><topic>Dopamine receptors</topic><topic>Ducks</topic><topic>Egg laying</topic><topic>Endocrine system</topic><topic>Female</topic><topic>GABA</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Ontology</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glucocorticoids</topic><topic>Glutamatergic transmission</topic><topic>Health aspects</topic><topic>Hormones</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>Laboratories</topic><topic>Livestock</topic><topic>Medicine and Health Sciences</topic><topic>Metaphase</topic><topic>Nesting</topic><topic>Neurosecretory Systems - metabolism</topic><topic>Neurotransmitters</topic><topic>Oxidative stress</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Poultry</topic><topic>Principal Component Analysis</topic><topic>Prophase</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping</topic><topic>Protein Interaction Maps</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Reproducibility of Results</topic><topic>Reproductive behavior</topic><topic>Research and analysis methods</topic><topic>Sexual Behavior, Animal</topic><topic>Steroids (Organic compounds)</topic><topic>Synapses</topic><topic>Thyroid</topic><topic>Thyroid hormones</topic><topic>Transcriptome</topic><topic>Trend analysis</topic><topic>Wildlife conservation</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Pengfei</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Liao, Wang</creatorcontrib><creatorcontrib>Ge, Kai</creatorcontrib><creatorcontrib>Jin, Sihua</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Chen, Xingyong</creatorcontrib><creatorcontrib>Geng, Zhaoyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Pengfei</au><au>Li, Min</au><au>Liao, Wang</au><au>Ge, Kai</au><au>Jin, Sihua</au><au>Zhang, Cheng</au><au>Chen, Xingyong</au><au>Geng, Zhaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypothalamic transcriptome analysis reveals the neuroendocrine mechanisms in controlling broodiness of Muscovy duck (Cairina moschata)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-05-09</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>e0207050</spage><epage>e0207050</epage><pages>e0207050-e0207050</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Broodiness, one of the maternal behaviors and instincts for natural breeding in birds, is an interesting topic in reproductive biology. Broodiness in poultry is characterized by persistent nesting, usually associated with cessation of egg laying. The study of avian broodiness is essential for bird conservation breeding and commercial poultry industry. In this study, we examined the hypothalamus transcriptome of Muscovy duck in three reproductive stages, including egg-laying anaphase (LA), brooding prophase (BP) and brooding metaphase (BM). Differences in gene expression during the transition from egg-laying to broodiness were examined, and 155, 379, 292 differently expressed genes (DEGs) were obtained by pairwise comparisons of LA-vs-BP, LA-vs-BM and BP-vs-BM, respectively (fold change≥1.5, P &lt; 0.05). Gene Ontology Term (GO) enrichment analysis suggested a possible role of oxidative stress in the hypothalamus might invoke reproductive costs that potentially change genes expression. KEGG analysis revealed glutamatergic synapse, dopaminergic synapse, serotonergic synapse and GABAergic synapse pathway were significantly enriched, and regulator genes were identified. Eight gene expression patterns were illustrated by trend analysis and further clustered into three clusters. Additional six hub genes were identified through combining trend analysis and protein-protein interaction (PPI) analysis. Our results suggested that the cyclical mechanisms of reproductive function conversion include effects of oxidative stress, biosynthesis of neurotransmitters or their receptors, and interactions between glucocorticoids and thyroid hormones and regulatory genes. These candidate genes and biological pathways may be used as targets for artificial manipulation and marker-assisted breeding in the reproductive behavior.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31071089</pmid><doi>10.1371/journal.pone.0207050</doi><tpages>e0207050</tpages><orcidid>https://orcid.org/0000-0002-0242-7222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-05, Vol.14 (5), p.e0207050-e0207050
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2222682804
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Anaphase
Animal behavior
Animal sciences
Animals
Aquatic birds
Biochemistry
Biology and Life Sciences
Biosynthesis
Birds
Brain
Breeding
Chickens
Computational Biology - methods
Conservation
Cost analysis
Dopamine receptors
Ducks
Egg laying
Endocrine system
Female
GABA
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene Ontology
Gene Regulatory Networks
Genes
Genetic aspects
Glucocorticoids
Glutamatergic transmission
Health aspects
Hormones
Hypothalamus
Hypothalamus - metabolism
Laboratories
Livestock
Medicine and Health Sciences
Metaphase
Nesting
Neurosecretory Systems - metabolism
Neurotransmitters
Oxidative stress
Peptides
Physical Sciences
Physiology
Poultry
Principal Component Analysis
Prophase
Protein interaction
Protein Interaction Mapping
Protein Interaction Maps
Protein-protein interactions
Proteins
Receptors
Reproducibility of Results
Reproductive behavior
Research and analysis methods
Sexual Behavior, Animal
Steroids (Organic compounds)
Synapses
Thyroid
Thyroid hormones
Transcriptome
Trend analysis
Wildlife conservation
Zoology
title Hypothalamic transcriptome analysis reveals the neuroendocrine mechanisms in controlling broodiness of Muscovy duck (Cairina moschata)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothalamic%20transcriptome%20analysis%20reveals%20the%20neuroendocrine%20mechanisms%20in%20controlling%20broodiness%20of%20Muscovy%20duck%20(Cairina%20moschata)&rft.jtitle=PloS%20one&rft.au=Ye,%20Pengfei&rft.date=2019-05-09&rft.volume=14&rft.issue=5&rft.spage=e0207050&rft.epage=e0207050&rft.pages=e0207050-e0207050&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0207050&rft_dat=%3Cgale_plos_%3EA584928667%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222682804&rft_id=info:pmid/31071089&rft_galeid=A584928667&rft_doaj_id=oai_doaj_org_article_6ebceaef149242df9f62b3da7a1028d1&rfr_iscdi=true