Flow imaging microscopy as a novel tool for high-throughput evaluation of elastin-like polymer coacervates

Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-05, Vol.14 (5), p.e0216406-e0216406
Hauptverfasser: Marvin, Laura, Paiva, Wynter, Gill, Nicole, Morales, Marissa A, Halpern, Jeffrey Mark, Vesenka, James, Balog, Eva Rose M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0216406
container_issue 5
container_start_page e0216406
container_title PloS one
container_volume 14
creator Marvin, Laura
Paiva, Wynter
Gill, Nicole
Morales, Marissa A
Halpern, Jeffrey Mark
Vesenka, James
Balog, Eva Rose M
description Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.
doi_str_mv 10.1371/journal.pone.0216406
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2222681926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584928647</galeid><doaj_id>oai_doaj_org_article_5f856f6986ec40b7953187c421369da6</doaj_id><sourcerecordid>A584928647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-79ab3b3a2ea598c158254a64445b2890fa5a05b094eb6b0d87ccb779abc52adc3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBYQkJwyOKP2EkuSFVFoVKlSnxdrYnXSbx448V2Fvbf47DbaoN6ID4ksp_3ncx4JsueE7wgrCTvVm70A9jFxg16gSkRBRYPslNSM5oLitnDo--T7EkIK4w5q4R4nJ0wgktCWHGarS6t-4XMGjozdGhtlHdBuc0OQUCABrfVFkXnLGqdR73p-jz23o1dvxkj0luwI0TjBuRapC2EaIbcmh8abZzdrbVHyoHSfgtRh6fZoxZs0M8O77Ps2-WHrxef8uubj1cX59e5EjWNeVlDwxoGVAOvK0V4RXkBoigK3tCqxi1wwLzBdaEb0eBlVSrVlJNKcQpLxc6yl3vfjXVBHsoUJE2PqEhNRSKu9sTSwUpufErf76QDI_9uON9J8NEoqyVvKy5aUVdCqwI3Zc0ZSRELSpiolzB5vT9EG5u1Xio9RA92Zjo_GUwvO7eVguOqpDwZvDkYePdz1CHKtQlKWwuDduP032y6R8FYQl_9g96f3YHqICVghtaluGoylee8KmpaiaJM1OIeKq2lTl2Qeqo1aX8meDsTJCbq37GDMQR59eXz_7M33-fs6yO212BjH5wdp7YKc7DYg1OPBq_buyITLKeRuK2GnEZCHkYiyV4cX9Cd6HYG2B8VFQcn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222681926</pqid></control><display><type>article</type><title>Flow imaging microscopy as a novel tool for high-throughput evaluation of elastin-like polymer coacervates</title><source>PLoS</source><source>MEDLINE</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Marvin, Laura ; Paiva, Wynter ; Gill, Nicole ; Morales, Marissa A ; Halpern, Jeffrey Mark ; Vesenka, James ; Balog, Eva Rose M</creator><contributor>Zelikin, Alexander N.</contributor><creatorcontrib>Marvin, Laura ; Paiva, Wynter ; Gill, Nicole ; Morales, Marissa A ; Halpern, Jeffrey Mark ; Vesenka, James ; Balog, Eva Rose M ; Zelikin, Alexander N.</creatorcontrib><description>Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0216406</identifier><identifier>PMID: 31071134</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Atomic force microscopy ; Biomedical engineering ; Biomedical materials ; Biopharmaceuticals ; Biopolymers ; Carbenicillin ; Chemical engineering ; Chemistry ; Drug delivery ; Drug Delivery Systems ; Drug Evaluation, Preclinical ; Elastin ; Elastin - chemistry ; Engineering and Technology ; Flow ; Genetic engineering ; Genetically modified organisms ; Imaging ; Industrial applications ; Industrial equipment ; Light scattering ; Methods ; Microparticles ; Microscopy ; Morphology ; Nanoparticles ; Particle analysis ; Pharmaceuticals ; Phase transitions ; Photon correlation spectroscopy ; Physical Sciences ; Physics ; Polymer industry ; Polymers ; Polypeptides ; Proteins ; Research and Analysis Methods ; Technology ; Tissue engineering</subject><ispartof>PloS one, 2019-05, Vol.14 (5), p.e0216406-e0216406</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Marvin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Marvin et al 2019 Marvin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-79ab3b3a2ea598c158254a64445b2890fa5a05b094eb6b0d87ccb779abc52adc3</citedby><cites>FETCH-LOGICAL-c692t-79ab3b3a2ea598c158254a64445b2890fa5a05b094eb6b0d87ccb779abc52adc3</cites><orcidid>0000-0003-0814-1986 ; 0000-0002-6490-4071 ; 0000-0001-6792-6914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31071134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zelikin, Alexander N.</contributor><creatorcontrib>Marvin, Laura</creatorcontrib><creatorcontrib>Paiva, Wynter</creatorcontrib><creatorcontrib>Gill, Nicole</creatorcontrib><creatorcontrib>Morales, Marissa A</creatorcontrib><creatorcontrib>Halpern, Jeffrey Mark</creatorcontrib><creatorcontrib>Vesenka, James</creatorcontrib><creatorcontrib>Balog, Eva Rose M</creatorcontrib><title>Flow imaging microscopy as a novel tool for high-throughput evaluation of elastin-like polymer coacervates</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.</description><subject>Atomic force microscopy</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Biopharmaceuticals</subject><subject>Biopolymers</subject><subject>Carbenicillin</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug Evaluation, Preclinical</subject><subject>Elastin</subject><subject>Elastin - chemistry</subject><subject>Engineering and Technology</subject><subject>Flow</subject><subject>Genetic engineering</subject><subject>Genetically modified organisms</subject><subject>Imaging</subject><subject>Industrial applications</subject><subject>Industrial equipment</subject><subject>Light scattering</subject><subject>Methods</subject><subject>Microparticles</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Particle analysis</subject><subject>Pharmaceuticals</subject><subject>Phase transitions</subject><subject>Photon correlation spectroscopy</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Technology</subject><subject>Tissue engineering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBYQkJwyOKP2EkuSFVFoVKlSnxdrYnXSbx448V2Fvbf47DbaoN6ID4ksp_3ncx4JsueE7wgrCTvVm70A9jFxg16gSkRBRYPslNSM5oLitnDo--T7EkIK4w5q4R4nJ0wgktCWHGarS6t-4XMGjozdGhtlHdBuc0OQUCABrfVFkXnLGqdR73p-jz23o1dvxkj0luwI0TjBuRapC2EaIbcmh8abZzdrbVHyoHSfgtRh6fZoxZs0M8O77Ps2-WHrxef8uubj1cX59e5EjWNeVlDwxoGVAOvK0V4RXkBoigK3tCqxi1wwLzBdaEb0eBlVSrVlJNKcQpLxc6yl3vfjXVBHsoUJE2PqEhNRSKu9sTSwUpufErf76QDI_9uON9J8NEoqyVvKy5aUVdCqwI3Zc0ZSRELSpiolzB5vT9EG5u1Xio9RA92Zjo_GUwvO7eVguOqpDwZvDkYePdz1CHKtQlKWwuDduP032y6R8FYQl_9g96f3YHqICVghtaluGoylee8KmpaiaJM1OIeKq2lTl2Qeqo1aX8meDsTJCbq37GDMQR59eXz_7M33-fs6yO212BjH5wdp7YKc7DYg1OPBq_buyITLKeRuK2GnEZCHkYiyV4cX9Cd6HYG2B8VFQcn</recordid><startdate>20190509</startdate><enddate>20190509</enddate><creator>Marvin, Laura</creator><creator>Paiva, Wynter</creator><creator>Gill, Nicole</creator><creator>Morales, Marissa A</creator><creator>Halpern, Jeffrey Mark</creator><creator>Vesenka, James</creator><creator>Balog, Eva Rose M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0814-1986</orcidid><orcidid>https://orcid.org/0000-0002-6490-4071</orcidid><orcidid>https://orcid.org/0000-0001-6792-6914</orcidid></search><sort><creationdate>20190509</creationdate><title>Flow imaging microscopy as a novel tool for high-throughput evaluation of elastin-like polymer coacervates</title><author>Marvin, Laura ; Paiva, Wynter ; Gill, Nicole ; Morales, Marissa A ; Halpern, Jeffrey Mark ; Vesenka, James ; Balog, Eva Rose M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-79ab3b3a2ea598c158254a64445b2890fa5a05b094eb6b0d87ccb779abc52adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Biopharmaceuticals</topic><topic>Biopolymers</topic><topic>Carbenicillin</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug Evaluation, Preclinical</topic><topic>Elastin</topic><topic>Elastin - chemistry</topic><topic>Engineering and Technology</topic><topic>Flow</topic><topic>Genetic engineering</topic><topic>Genetically modified organisms</topic><topic>Imaging</topic><topic>Industrial applications</topic><topic>Industrial equipment</topic><topic>Light scattering</topic><topic>Methods</topic><topic>Microparticles</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Particle analysis</topic><topic>Pharmaceuticals</topic><topic>Phase transitions</topic><topic>Photon correlation spectroscopy</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Technology</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marvin, Laura</creatorcontrib><creatorcontrib>Paiva, Wynter</creatorcontrib><creatorcontrib>Gill, Nicole</creatorcontrib><creatorcontrib>Morales, Marissa A</creatorcontrib><creatorcontrib>Halpern, Jeffrey Mark</creatorcontrib><creatorcontrib>Vesenka, James</creatorcontrib><creatorcontrib>Balog, Eva Rose M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marvin, Laura</au><au>Paiva, Wynter</au><au>Gill, Nicole</au><au>Morales, Marissa A</au><au>Halpern, Jeffrey Mark</au><au>Vesenka, James</au><au>Balog, Eva Rose M</au><au>Zelikin, Alexander N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow imaging microscopy as a novel tool for high-throughput evaluation of elastin-like polymer coacervates</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-05-09</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>e0216406</spage><epage>e0216406</epage><pages>e0216406-e0216406</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31071134</pmid><doi>10.1371/journal.pone.0216406</doi><tpages>e0216406</tpages><orcidid>https://orcid.org/0000-0003-0814-1986</orcidid><orcidid>https://orcid.org/0000-0002-6490-4071</orcidid><orcidid>https://orcid.org/0000-0001-6792-6914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-05, Vol.14 (5), p.e0216406-e0216406
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2222681926
source PLoS; MEDLINE; PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Atomic force microscopy
Biomedical engineering
Biomedical materials
Biopharmaceuticals
Biopolymers
Carbenicillin
Chemical engineering
Chemistry
Drug delivery
Drug Delivery Systems
Drug Evaluation, Preclinical
Elastin
Elastin - chemistry
Engineering and Technology
Flow
Genetic engineering
Genetically modified organisms
Imaging
Industrial applications
Industrial equipment
Light scattering
Methods
Microparticles
Microscopy
Morphology
Nanoparticles
Particle analysis
Pharmaceuticals
Phase transitions
Photon correlation spectroscopy
Physical Sciences
Physics
Polymer industry
Polymers
Polypeptides
Proteins
Research and Analysis Methods
Technology
Tissue engineering
title Flow imaging microscopy as a novel tool for high-throughput evaluation of elastin-like polymer coacervates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20imaging%20microscopy%20as%20a%20novel%20tool%20for%20high-throughput%20evaluation%20of%20elastin-like%20polymer%20coacervates&rft.jtitle=PloS%20one&rft.au=Marvin,%20Laura&rft.date=2019-05-09&rft.volume=14&rft.issue=5&rft.spage=e0216406&rft.epage=e0216406&rft.pages=e0216406-e0216406&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0216406&rft_dat=%3Cgale_plos_%3EA584928647%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222681926&rft_id=info:pmid/31071134&rft_galeid=A584928647&rft_doaj_id=oai_doaj_org_article_5f856f6986ec40b7953187c421369da6&rfr_iscdi=true