The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity

Task-evoked Blood-oxygenation-level-dependent (BOLD-fMRI) signal activation is widely used to interrogate eloquence of brain areas. However, data interpretation can be improved, especially in regions with absent BOLD-fMRI signal activation. Absent BOLD-fMRI signal activation may actually represent f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-05, Vol.14 (5), p.e0215294
Hauptverfasser: van Niftrik, Christiaan Hendrik Bas, Piccirelli, Marco, Muscas, Giovanni, Sebök, Martina, Fisher, Joseph Arnold, Bozinov, Oliver, Stippich, Christoph, Valavanis, Antonios, Regli, Luca, Fierstra, Jorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0215294
container_title PloS one
container_volume 14
creator van Niftrik, Christiaan Hendrik Bas
Piccirelli, Marco
Muscas, Giovanni
Sebök, Martina
Fisher, Joseph Arnold
Bozinov, Oliver
Stippich, Christoph
Valavanis, Antonios
Regli, Luca
Fierstra, Jorn
description Task-evoked Blood-oxygenation-level-dependent (BOLD-fMRI) signal activation is widely used to interrogate eloquence of brain areas. However, data interpretation can be improved, especially in regions with absent BOLD-fMRI signal activation. Absent BOLD-fMRI signal activation may actually represent false-negative activation due to impaired cerebrovascular reactivity (BOLD-CVR) of the vascular bed. The relationship between impaired BOLD-CVR and BOLD-fMRI signal activation may be better studied in healthy subjects where neurovascular coupling is known to be intact. Using a model-based prospective end-tidal carbon dioxide (CO2) targeting algorithm, we performed two controlled 3 tesla BOLD-CVR studies on 17 healthy subjects: 1: at the subjects' individual resting end-tidal CO2 baseline. 2: Around +6.0 mmHg CO2 above the subjects' individual resting baseline. Two BOLD-fMRI finger-tapping experiments were performed at similar normo- and hypercapnic levels. Relative BOLD fMRI signal activation and t-values were calculated for BOLD-CVR and BOLD-fMRI data. For each component of the cerebral motor-network (precentral gyrus, postcentral gyrus, supplementary motor area, cerebellum und fronto-operculum), the correlation between BOLD-CVR and BOLD-fMRI signal changes and t-values was investigated. Finally, a voxel-wise quantitative analysis of the impact of BOLD-CVR on BOLD-fMRI was performed. For the motor-network, the linear correlation coefficient between BOLD-CVR and BOLD-fMRI t-values were significant (p
doi_str_mv 10.1371/journal.pone.0215294
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2221080779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584560736</galeid><doaj_id>oai_doaj_org_article_3059f75c00964c208b54ca458899fce0</doaj_id><sourcerecordid>A584560736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-f8d5a47f72baabf093ebc61fe51b672c55aa068ed4229289fa686100a388da623</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlo0uRGWBY_BlYW1tXb8DZNOlk7zZi0486_NzPTXaagIL3om7fPOQ2Hk2UvMZpjWuL3t34IHbTzte_MHBHMiCweZadYUjLjBNHHR_NJ9izGW4QYFZw_zU4oRkwyXJ5m_c3S5Bt_Z9rZbxdNDslyG13Mvc0ttGnTmQZ6tzG5_Xq9yEGnOZ19l7suD6ZJ0x5eB7_xP02du9UaXEiDNsFUaQtRDy2EBO_Frt8-z57svV-M77Ps-6ePNxdfZpdXnxcX55czzZnsZ1bUDIrSlqQCqCyS1FSaY2sYrnhJNGMAiAtTF4RIIqQFLjhGCKgQNXBCz7LXB99166MaA4uKEIKRQGUpE7E4ELWHW7UObgVhqzw4tV_40CgIvdOtUTRFZkumEZK80ASJihUaCiaElFYblLw-jH8bqpWpten6AO3EdPqlc0vV-I3iDBHKdgZvRoPgfw0m9v-48kg1kG7lOuuTmV65qNU5EwXjqKQ8UfO_UOmpzcrpVBnr0n4ieDcRJKY3d30DQ4xq8e36_9mrH1P27RG7NND2y-jbYVehOAWLA6iDjzEY-5AcRmrX-Ps01K7xamx8kr06Tv1BdF9x-gfOWfzu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221080779</pqid></control><display><type>article</type><title>The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity</title><source>PLoS</source><source>MEDLINE</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>van Niftrik, Christiaan Hendrik Bas ; Piccirelli, Marco ; Muscas, Giovanni ; Sebök, Martina ; Fisher, Joseph Arnold ; Bozinov, Oliver ; Stippich, Christoph ; Valavanis, Antonios ; Regli, Luca ; Fierstra, Jorn</creator><creatorcontrib>van Niftrik, Christiaan Hendrik Bas ; Piccirelli, Marco ; Muscas, Giovanni ; Sebök, Martina ; Fisher, Joseph Arnold ; Bozinov, Oliver ; Stippich, Christoph ; Valavanis, Antonios ; Regli, Luca ; Fierstra, Jorn</creatorcontrib><description>Task-evoked Blood-oxygenation-level-dependent (BOLD-fMRI) signal activation is widely used to interrogate eloquence of brain areas. However, data interpretation can be improved, especially in regions with absent BOLD-fMRI signal activation. Absent BOLD-fMRI signal activation may actually represent false-negative activation due to impaired cerebrovascular reactivity (BOLD-CVR) of the vascular bed. The relationship between impaired BOLD-CVR and BOLD-fMRI signal activation may be better studied in healthy subjects where neurovascular coupling is known to be intact. Using a model-based prospective end-tidal carbon dioxide (CO2) targeting algorithm, we performed two controlled 3 tesla BOLD-CVR studies on 17 healthy subjects: 1: at the subjects' individual resting end-tidal CO2 baseline. 2: Around +6.0 mmHg CO2 above the subjects' individual resting baseline. Two BOLD-fMRI finger-tapping experiments were performed at similar normo- and hypercapnic levels. Relative BOLD fMRI signal activation and t-values were calculated for BOLD-CVR and BOLD-fMRI data. For each component of the cerebral motor-network (precentral gyrus, postcentral gyrus, supplementary motor area, cerebellum und fronto-operculum), the correlation between BOLD-CVR and BOLD-fMRI signal changes and t-values was investigated. Finally, a voxel-wise quantitative analysis of the impact of BOLD-CVR on BOLD-fMRI was performed. For the motor-network, the linear correlation coefficient between BOLD-CVR and BOLD-fMRI t-values were significant (p&lt;0.01) and in the range 0.33-0.55, similar to the correlations between the CVR and fMRI Δ%signal (p&lt;0.05; range 0.34-0.60). The linear relationship between CVR and fMRI is challenged by our voxel-wise analysis of Δ%signal and t-value change between normo- and hypercapnia. Our main finding is that BOLD fMRI signal activation maps are markedly dampened in the presence of impaired BOLD-CVR and highlights the importance of a complementary BOLD-CVR assessment in addition to a task-evoked BOLD fMRI to identify brain areas at risk for false-negative BOLD-fMRI signal activation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0215294</identifier><identifier>PMID: 31059517</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Biology and Life Sciences ; Brain ; Brain - blood supply ; Brain - diagnostic imaging ; Brain cancer ; Brain mapping ; Carbon dioxide ; Cerebellum ; Cerebrovascular Circulation ; Cerebrovascular disorders ; Computer and Information Sciences ; Correlation ; Correlation coefficient ; Correlation coefficients ; Data interpretation ; Earth Sciences ; Ecology and Environmental Sciences ; Engineering and Technology ; Female ; Functional magnetic resonance imaging ; Humans ; Hypercapnia ; Hypercapnia - diagnostic imaging ; Image Processing, Computer-Assisted ; Impact analysis ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medicine and Health Sciences ; Motor task performance ; Neuroimaging ; Neurosciences ; Neurosurgery ; Neurovascular Coupling ; NMR ; Nuclear magnetic resonance ; Operculum ; Oxygenation ; Physical Sciences ; Postcentral gyrus ; Precentral gyrus ; Quantitative analysis ; Research and Analysis Methods ; Supplementary motor area</subject><ispartof>PloS one, 2019-05, Vol.14 (5), p.e0215294</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 van Niftrik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 van Niftrik et al 2019 van Niftrik et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-f8d5a47f72baabf093ebc61fe51b672c55aa068ed4229289fa686100a388da623</citedby><cites>FETCH-LOGICAL-c659t-f8d5a47f72baabf093ebc61fe51b672c55aa068ed4229289fa686100a388da623</cites><orcidid>0000-0003-0930-8717 ; 0000-0003-4639-4474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Niftrik, Christiaan Hendrik Bas</creatorcontrib><creatorcontrib>Piccirelli, Marco</creatorcontrib><creatorcontrib>Muscas, Giovanni</creatorcontrib><creatorcontrib>Sebök, Martina</creatorcontrib><creatorcontrib>Fisher, Joseph Arnold</creatorcontrib><creatorcontrib>Bozinov, Oliver</creatorcontrib><creatorcontrib>Stippich, Christoph</creatorcontrib><creatorcontrib>Valavanis, Antonios</creatorcontrib><creatorcontrib>Regli, Luca</creatorcontrib><creatorcontrib>Fierstra, Jorn</creatorcontrib><title>The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Task-evoked Blood-oxygenation-level-dependent (BOLD-fMRI) signal activation is widely used to interrogate eloquence of brain areas. However, data interpretation can be improved, especially in regions with absent BOLD-fMRI signal activation. Absent BOLD-fMRI signal activation may actually represent false-negative activation due to impaired cerebrovascular reactivity (BOLD-CVR) of the vascular bed. The relationship between impaired BOLD-CVR and BOLD-fMRI signal activation may be better studied in healthy subjects where neurovascular coupling is known to be intact. Using a model-based prospective end-tidal carbon dioxide (CO2) targeting algorithm, we performed two controlled 3 tesla BOLD-CVR studies on 17 healthy subjects: 1: at the subjects' individual resting end-tidal CO2 baseline. 2: Around +6.0 mmHg CO2 above the subjects' individual resting baseline. Two BOLD-fMRI finger-tapping experiments were performed at similar normo- and hypercapnic levels. Relative BOLD fMRI signal activation and t-values were calculated for BOLD-CVR and BOLD-fMRI data. For each component of the cerebral motor-network (precentral gyrus, postcentral gyrus, supplementary motor area, cerebellum und fronto-operculum), the correlation between BOLD-CVR and BOLD-fMRI signal changes and t-values was investigated. Finally, a voxel-wise quantitative analysis of the impact of BOLD-CVR on BOLD-fMRI was performed. For the motor-network, the linear correlation coefficient between BOLD-CVR and BOLD-fMRI t-values were significant (p&lt;0.01) and in the range 0.33-0.55, similar to the correlations between the CVR and fMRI Δ%signal (p&lt;0.05; range 0.34-0.60). The linear relationship between CVR and fMRI is challenged by our voxel-wise analysis of Δ%signal and t-value change between normo- and hypercapnia. Our main finding is that BOLD fMRI signal activation maps are markedly dampened in the presence of impaired BOLD-CVR and highlights the importance of a complementary BOLD-CVR assessment in addition to a task-evoked BOLD fMRI to identify brain areas at risk for false-negative BOLD-fMRI signal activation.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Carbon dioxide</subject><subject>Cerebellum</subject><subject>Cerebrovascular Circulation</subject><subject>Cerebrovascular disorders</subject><subject>Computer and Information Sciences</subject><subject>Correlation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data interpretation</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Hypercapnia</subject><subject>Hypercapnia - diagnostic imaging</subject><subject>Image Processing, Computer-Assisted</subject><subject>Impact analysis</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Motor task performance</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Neurovascular Coupling</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Operculum</subject><subject>Oxygenation</subject><subject>Physical Sciences</subject><subject>Postcentral gyrus</subject><subject>Precentral gyrus</subject><subject>Quantitative analysis</subject><subject>Research and Analysis Methods</subject><subject>Supplementary motor area</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlo0uRGWBY_BlYW1tXb8DZNOlk7zZi0486_NzPTXaagIL3om7fPOQ2Hk2UvMZpjWuL3t34IHbTzte_MHBHMiCweZadYUjLjBNHHR_NJ9izGW4QYFZw_zU4oRkwyXJ5m_c3S5Bt_Z9rZbxdNDslyG13Mvc0ttGnTmQZ6tzG5_Xq9yEGnOZ19l7suD6ZJ0x5eB7_xP02du9UaXEiDNsFUaQtRDy2EBO_Frt8-z57svV-M77Ps-6ePNxdfZpdXnxcX55czzZnsZ1bUDIrSlqQCqCyS1FSaY2sYrnhJNGMAiAtTF4RIIqQFLjhGCKgQNXBCz7LXB99166MaA4uKEIKRQGUpE7E4ELWHW7UObgVhqzw4tV_40CgIvdOtUTRFZkumEZK80ASJihUaCiaElFYblLw-jH8bqpWpten6AO3EdPqlc0vV-I3iDBHKdgZvRoPgfw0m9v-48kg1kG7lOuuTmV65qNU5EwXjqKQ8UfO_UOmpzcrpVBnr0n4ieDcRJKY3d30DQ4xq8e36_9mrH1P27RG7NND2y-jbYVehOAWLA6iDjzEY-5AcRmrX-Ps01K7xamx8kr06Tv1BdF9x-gfOWfzu</recordid><startdate>20190506</startdate><enddate>20190506</enddate><creator>van Niftrik, Christiaan Hendrik Bas</creator><creator>Piccirelli, Marco</creator><creator>Muscas, Giovanni</creator><creator>Sebök, Martina</creator><creator>Fisher, Joseph Arnold</creator><creator>Bozinov, Oliver</creator><creator>Stippich, Christoph</creator><creator>Valavanis, Antonios</creator><creator>Regli, Luca</creator><creator>Fierstra, Jorn</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0930-8717</orcidid><orcidid>https://orcid.org/0000-0003-4639-4474</orcidid></search><sort><creationdate>20190506</creationdate><title>The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity</title><author>van Niftrik, Christiaan Hendrik Bas ; Piccirelli, Marco ; Muscas, Giovanni ; Sebök, Martina ; Fisher, Joseph Arnold ; Bozinov, Oliver ; Stippich, Christoph ; Valavanis, Antonios ; Regli, Luca ; Fierstra, Jorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-f8d5a47f72baabf093ebc61fe51b672c55aa068ed4229289fa686100a388da623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Carbon dioxide</topic><topic>Cerebellum</topic><topic>Cerebrovascular Circulation</topic><topic>Cerebrovascular disorders</topic><topic>Computer and Information Sciences</topic><topic>Correlation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data interpretation</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Hypercapnia</topic><topic>Hypercapnia - diagnostic imaging</topic><topic>Image Processing, Computer-Assisted</topic><topic>Impact analysis</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Motor task performance</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Neurovascular Coupling</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Operculum</topic><topic>Oxygenation</topic><topic>Physical Sciences</topic><topic>Postcentral gyrus</topic><topic>Precentral gyrus</topic><topic>Quantitative analysis</topic><topic>Research and Analysis Methods</topic><topic>Supplementary motor area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Niftrik, Christiaan Hendrik Bas</creatorcontrib><creatorcontrib>Piccirelli, Marco</creatorcontrib><creatorcontrib>Muscas, Giovanni</creatorcontrib><creatorcontrib>Sebök, Martina</creatorcontrib><creatorcontrib>Fisher, Joseph Arnold</creatorcontrib><creatorcontrib>Bozinov, Oliver</creatorcontrib><creatorcontrib>Stippich, Christoph</creatorcontrib><creatorcontrib>Valavanis, Antonios</creatorcontrib><creatorcontrib>Regli, Luca</creatorcontrib><creatorcontrib>Fierstra, Jorn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Niftrik, Christiaan Hendrik Bas</au><au>Piccirelli, Marco</au><au>Muscas, Giovanni</au><au>Sebök, Martina</au><au>Fisher, Joseph Arnold</au><au>Bozinov, Oliver</au><au>Stippich, Christoph</au><au>Valavanis, Antonios</au><au>Regli, Luca</au><au>Fierstra, Jorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-05-06</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>e0215294</spage><pages>e0215294-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Task-evoked Blood-oxygenation-level-dependent (BOLD-fMRI) signal activation is widely used to interrogate eloquence of brain areas. However, data interpretation can be improved, especially in regions with absent BOLD-fMRI signal activation. Absent BOLD-fMRI signal activation may actually represent false-negative activation due to impaired cerebrovascular reactivity (BOLD-CVR) of the vascular bed. The relationship between impaired BOLD-CVR and BOLD-fMRI signal activation may be better studied in healthy subjects where neurovascular coupling is known to be intact. Using a model-based prospective end-tidal carbon dioxide (CO2) targeting algorithm, we performed two controlled 3 tesla BOLD-CVR studies on 17 healthy subjects: 1: at the subjects' individual resting end-tidal CO2 baseline. 2: Around +6.0 mmHg CO2 above the subjects' individual resting baseline. Two BOLD-fMRI finger-tapping experiments were performed at similar normo- and hypercapnic levels. Relative BOLD fMRI signal activation and t-values were calculated for BOLD-CVR and BOLD-fMRI data. For each component of the cerebral motor-network (precentral gyrus, postcentral gyrus, supplementary motor area, cerebellum und fronto-operculum), the correlation between BOLD-CVR and BOLD-fMRI signal changes and t-values was investigated. Finally, a voxel-wise quantitative analysis of the impact of BOLD-CVR on BOLD-fMRI was performed. For the motor-network, the linear correlation coefficient between BOLD-CVR and BOLD-fMRI t-values were significant (p&lt;0.01) and in the range 0.33-0.55, similar to the correlations between the CVR and fMRI Δ%signal (p&lt;0.05; range 0.34-0.60). The linear relationship between CVR and fMRI is challenged by our voxel-wise analysis of Δ%signal and t-value change between normo- and hypercapnia. Our main finding is that BOLD fMRI signal activation maps are markedly dampened in the presence of impaired BOLD-CVR and highlights the importance of a complementary BOLD-CVR assessment in addition to a task-evoked BOLD fMRI to identify brain areas at risk for false-negative BOLD-fMRI signal activation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31059517</pmid><doi>10.1371/journal.pone.0215294</doi><tpages>e0215294</tpages><orcidid>https://orcid.org/0000-0003-0930-8717</orcidid><orcidid>https://orcid.org/0000-0003-4639-4474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-05, Vol.14 (5), p.e0215294
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2221080779
source PLoS; MEDLINE; PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Adult
Algorithms
Biology and Life Sciences
Brain
Brain - blood supply
Brain - diagnostic imaging
Brain cancer
Brain mapping
Carbon dioxide
Cerebellum
Cerebrovascular Circulation
Cerebrovascular disorders
Computer and Information Sciences
Correlation
Correlation coefficient
Correlation coefficients
Data interpretation
Earth Sciences
Ecology and Environmental Sciences
Engineering and Technology
Female
Functional magnetic resonance imaging
Humans
Hypercapnia
Hypercapnia - diagnostic imaging
Image Processing, Computer-Assisted
Impact analysis
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medicine and Health Sciences
Motor task performance
Neuroimaging
Neurosciences
Neurosurgery
Neurovascular Coupling
NMR
Nuclear magnetic resonance
Operculum
Oxygenation
Physical Sciences
Postcentral gyrus
Precentral gyrus
Quantitative analysis
Research and Analysis Methods
Supplementary motor area
title The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20voxel-wise%20analysis%20of%20false%20negative%20fMRI%20activation%20in%20regions%20of%20provoked%20impaired%20cerebrovascular%20reactivity&rft.jtitle=PloS%20one&rft.au=van%20Niftrik,%20Christiaan%20Hendrik%20Bas&rft.date=2019-05-06&rft.volume=14&rft.issue=5&rft.spage=e0215294&rft.pages=e0215294-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0215294&rft_dat=%3Cgale_plos_%3EA584560736%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221080779&rft_id=info:pmid/31059517&rft_galeid=A584560736&rft_doaj_id=oai_doaj_org_article_3059f75c00964c208b54ca458899fce0&rfr_iscdi=true