Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition

Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-04, Vol.14 (4), p.e0212654-e0212654
Hauptverfasser: Foong, Choon Pin, Higuchi-Takeuchi, Mieko, Numata, Keiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0212654
container_issue 4
container_start_page e0212654
container_title PloS one
container_volume 14
creator Foong, Choon Pin
Higuchi-Takeuchi, Mieko
Numata, Keiji
description Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.
doi_str_mv 10.1371/journal.pone.0212654
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2217093039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A583952705</galeid><doaj_id>oai_doaj_org_article_bdfcb6020a7b4793a4e0e4314cb2efb8</doaj_id><sourcerecordid>A583952705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-1cf642215d5ffb48661ddea19cfec4f1a2bdcc81168da21f9aae7b08e24f35643</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEolB4AwSRkBBc7OJTsskNUlVxqFSpUjncWo493rh47WA7pftwvBtON626qBcoF3E83__bM5MpihcYLTFd4fcXfgxO2OXgHSwRwaSu2IPiCW4pWdQE0Yd31gfF0xgvEKpoU9ePiwOKEWUVYU-KP2dDMhthSxO8K6V3ElwKIhnvYql9KNfB_079QsTopREJVDl4u-23KvirrbA_hfN5t-yMj1uXeogmlsaVeVVuRDAOyqH3aQ4mI8thDIPNAiETBDNuyvPeK3852ryMo9VG-aE309foFISdPEsh-BSmkJyuqcx0xWfFIy1shOfz-7D4_unjt-Mvi9OzzyfHR6cLuaqatMBS14wQXKlK647lGmClQOBWapBMY0E6JWWDcd0oQbBuhYBVhxogTNOqZvSweLXzHayPfK585NlyhVqKaJuJkx2hvLjgQ8g1DVvuheHXGz6suQg5fQu8U1p2NSJIrDq2aqlggIBRzGRHQHdN9vownzZ2G1C7jtg90_2IMz1f-0tes6ZBrMoGb2eD4H-NEBPfmCjBWuHAj7t7s4aRFmf09T_o_dnN1FrkBIzTuRVCTqb8qGpoW5EVmo5d3kPlR8HG5J6BNnl_T_BuT5CZBFdpLcYY-cnX8_9nz37ss2_usD0Im_ro7Xj9V--DbAfK4GMMoG-LjBGfpuymGnyaMj5PWZa9vNugW9HNWNG_cssrbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217093039</pqid></control><display><type>article</type><title>Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition</title><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>PubMed (Medline)</source><source>Public Library of Science</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Foong, Choon Pin ; Higuchi-Takeuchi, Mieko ; Numata, Keiji</creator><contributor>Koller, Martin</contributor><creatorcontrib>Foong, Choon Pin ; Higuchi-Takeuchi, Mieko ; Numata, Keiji ; Koller, Martin</creatorcontrib><description>Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0212654</identifier><identifier>PMID: 31034524</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacterial Proteins - metabolism ; Bioengineering ; Biomass ; Biosynthesis ; Biotechnology ; Carbon ; Carbon - metabolism ; Carbon neutrality ; Cell growth ; Citric acid ; Ferric citrate ; Growth rate ; Heterotrophs ; Hydrogen ; Iron ; Iron - metabolism ; Iron compounds ; Metabolism ; Metabolites ; Microorganisms ; Nutrient concentrations ; Nutrient utilization ; Optimization ; Photosynthesis ; Photosynthesis - genetics ; Physical properties ; Plastics ; Plastics industry ; Polyhydroxyalkanoates ; Polyhydroxyalkanoates - biosynthesis ; Polyhydroxyalkanoates - metabolism ; Polyhydroxyalkanoic acid ; Polymers ; Production management ; Productivity ; Rhodovulum - growth &amp; development ; Rhodovulum - metabolism ; Sustainable production</subject><ispartof>PloS one, 2019-04, Vol.14 (4), p.e0212654-e0212654</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Foong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Foong et al 2019 Foong et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-1cf642215d5ffb48661ddea19cfec4f1a2bdcc81168da21f9aae7b08e24f35643</citedby><cites>FETCH-LOGICAL-c758t-1cf642215d5ffb48661ddea19cfec4f1a2bdcc81168da21f9aae7b08e24f35643</cites><orcidid>0000-0003-2199-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488045/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488045/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31034524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Koller, Martin</contributor><creatorcontrib>Foong, Choon Pin</creatorcontrib><creatorcontrib>Higuchi-Takeuchi, Mieko</creatorcontrib><creatorcontrib>Numata, Keiji</creatorcontrib><title>Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.</description><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bioengineering</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon neutrality</subject><subject>Cell growth</subject><subject>Citric acid</subject><subject>Ferric citrate</subject><subject>Growth rate</subject><subject>Heterotrophs</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron compounds</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Nutrient concentrations</subject><subject>Nutrient utilization</subject><subject>Optimization</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Physical properties</subject><subject>Plastics</subject><subject>Plastics industry</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoates - biosynthesis</subject><subject>Polyhydroxyalkanoates - metabolism</subject><subject>Polyhydroxyalkanoic acid</subject><subject>Polymers</subject><subject>Production management</subject><subject>Productivity</subject><subject>Rhodovulum - growth &amp; development</subject><subject>Rhodovulum - metabolism</subject><subject>Sustainable production</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEolB4AwSRkBBc7OJTsskNUlVxqFSpUjncWo493rh47WA7pftwvBtON626qBcoF3E83__bM5MpihcYLTFd4fcXfgxO2OXgHSwRwaSu2IPiCW4pWdQE0Yd31gfF0xgvEKpoU9ePiwOKEWUVYU-KP2dDMhthSxO8K6V3ElwKIhnvYql9KNfB_079QsTopREJVDl4u-23KvirrbA_hfN5t-yMj1uXeogmlsaVeVVuRDAOyqH3aQ4mI8thDIPNAiETBDNuyvPeK3852ryMo9VG-aE309foFISdPEsh-BSmkJyuqcx0xWfFIy1shOfz-7D4_unjt-Mvi9OzzyfHR6cLuaqatMBS14wQXKlK647lGmClQOBWapBMY0E6JWWDcd0oQbBuhYBVhxogTNOqZvSweLXzHayPfK585NlyhVqKaJuJkx2hvLjgQ8g1DVvuheHXGz6suQg5fQu8U1p2NSJIrDq2aqlggIBRzGRHQHdN9vownzZ2G1C7jtg90_2IMz1f-0tes6ZBrMoGb2eD4H-NEBPfmCjBWuHAj7t7s4aRFmf09T_o_dnN1FrkBIzTuRVCTqb8qGpoW5EVmo5d3kPlR8HG5J6BNnl_T_BuT5CZBFdpLcYY-cnX8_9nz37ss2_usD0Im_ro7Xj9V--DbAfK4GMMoG-LjBGfpuymGnyaMj5PWZa9vNugW9HNWNG_cssrbg</recordid><startdate>20190429</startdate><enddate>20190429</enddate><creator>Foong, Choon Pin</creator><creator>Higuchi-Takeuchi, Mieko</creator><creator>Numata, Keiji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2199-7420</orcidid></search><sort><creationdate>20190429</creationdate><title>Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition</title><author>Foong, Choon Pin ; Higuchi-Takeuchi, Mieko ; Numata, Keiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-1cf642215d5ffb48661ddea19cfec4f1a2bdcc81168da21f9aae7b08e24f35643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bioengineering</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon neutrality</topic><topic>Cell growth</topic><topic>Citric acid</topic><topic>Ferric citrate</topic><topic>Growth rate</topic><topic>Heterotrophs</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron compounds</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Nutrient concentrations</topic><topic>Nutrient utilization</topic><topic>Optimization</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Physical properties</topic><topic>Plastics</topic><topic>Plastics industry</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoates - biosynthesis</topic><topic>Polyhydroxyalkanoates - metabolism</topic><topic>Polyhydroxyalkanoic acid</topic><topic>Polymers</topic><topic>Production management</topic><topic>Productivity</topic><topic>Rhodovulum - growth &amp; development</topic><topic>Rhodovulum - metabolism</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foong, Choon Pin</creatorcontrib><creatorcontrib>Higuchi-Takeuchi, Mieko</creatorcontrib><creatorcontrib>Numata, Keiji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foong, Choon Pin</au><au>Higuchi-Takeuchi, Mieko</au><au>Numata, Keiji</au><au>Koller, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-04-29</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>e0212654</spage><epage>e0212654</epage><pages>e0212654-e0212654</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31034524</pmid><doi>10.1371/journal.pone.0212654</doi><tpages>e0212654</tpages><orcidid>https://orcid.org/0000-0003-2199-7420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-04, Vol.14 (4), p.e0212654-e0212654
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2217093039
source MEDLINE; Directory of Open Access Journals; PubMed (Medline); Public Library of Science; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Bacteria
Bacterial Proteins - metabolism
Bioengineering
Biomass
Biosynthesis
Biotechnology
Carbon
Carbon - metabolism
Carbon neutrality
Cell growth
Citric acid
Ferric citrate
Growth rate
Heterotrophs
Hydrogen
Iron
Iron - metabolism
Iron compounds
Metabolism
Metabolites
Microorganisms
Nutrient concentrations
Nutrient utilization
Optimization
Photosynthesis
Photosynthesis - genetics
Physical properties
Plastics
Plastics industry
Polyhydroxyalkanoates
Polyhydroxyalkanoates - biosynthesis
Polyhydroxyalkanoates - metabolism
Polyhydroxyalkanoic acid
Polymers
Production management
Productivity
Rhodovulum - growth & development
Rhodovulum - metabolism
Sustainable production
title Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20iron%20concentrations%20for%20growth-associated%20polyhydroxyalkanoate%20biosynthesis%20in%20the%20marine%20photosynthetic%20purple%20bacterium%20Rhodovulum%20sulfidophilum%20under%20photoheterotrophic%20condition&rft.jtitle=PloS%20one&rft.au=Foong,%20Choon%20Pin&rft.date=2019-04-29&rft.volume=14&rft.issue=4&rft.spage=e0212654&rft.epage=e0212654&rft.pages=e0212654-e0212654&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0212654&rft_dat=%3Cgale_plos_%3EA583952705%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217093039&rft_id=info:pmid/31034524&rft_galeid=A583952705&rft_doaj_id=oai_doaj_org_article_bdfcb6020a7b4793a4e0e4314cb2efb8&rfr_iscdi=true