Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production

The production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019, Vol.14 (4), p.e0212990-e0212990
Hauptverfasser: Røyne, Anja, Phua, Yi Jing, Balzer Le, Simone, Eikjeland, Ina Grosås, Josefsen, Kjell Domaas, Markussen, Sidsel, Myhr, Anders, Throne-Holst, Harald, Sikorski, Pawel, Wentzel, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0212990
container_issue 4
container_start_page e0212990
container_title PloS one
container_volume 14
creator Røyne, Anja
Phua, Yi Jing
Balzer Le, Simone
Eikjeland, Ina Grosås
Josefsen, Kjell Domaas
Markussen, Sidsel
Myhr, Anders
Throne-Holst, Harald
Sikorski, Pawel
Wentzel, Alexander
description The production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.
doi_str_mv 10.1371/journal.pone.0212990
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2210513488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a811a6548d35404aac3e9654bf6ea34b</doaj_id><sourcerecordid>2210963595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3f8b82465a1999ffcf795f9047cb823c83fc73c0a7adff286c58aa42c46176213</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJSzns1l9xbA5IaMVHpUq9LGdr4jhbr5w42A7V3vjpeNls2SJOHr95M2_GfkXxGqMlpjW-2vopDOCWox_MEhFMpERPinMsKVlwgujTk_iseBHjFqGKCs6fF2cUZbJA_Lz4tfb3ENpYQun8fbm6JaXpbYzWD2UzWdfaYVP2kEyw4HJqdH63hxrQM9abBI13NvblJb4i7z-U6ztzko-7mExfwtCWY_DJp91o9lE76ZRVXhbPOnDRvJrPi-L7l8_r1bfFze3X69Wnm4VmAqUF7UQjCOMVYCll1-mullUnEat1xqkWtNM11QhqaLuOCK4rAcCIZhzXnGB6Ubw99M0bRDU_XlSEYFRhyoTIjOsDo_WwVWOwPYSd8mDVH8CHjYKQrHZGgcAYeMVESyuGGICmRuZ703EDlDW518dZbWp602ozpADuUdPHmcHeqY3_qTjjdf7dv-PqYGOygxp8AIWRqIjiQtYsMy5nieB_TCYmlf9NG-dgMH46bCY5rWSVqe_-of5_f3aU9DEG0z2Mi5HaW-5YpfaWU7Plctmb01Ufio4eo78BjGHURQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210513488</pqid></control><display><type>article</type><title>Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Røyne, Anja ; Phua, Yi Jing ; Balzer Le, Simone ; Eikjeland, Ina Grosås ; Josefsen, Kjell Domaas ; Markussen, Sidsel ; Myhr, Anders ; Throne-Holst, Harald ; Sikorski, Pawel ; Wentzel, Alexander</creator><contributor>Nguyen-Tri, Phuong</contributor><creatorcontrib>Røyne, Anja ; Phua, Yi Jing ; Balzer Le, Simone ; Eikjeland, Ina Grosås ; Josefsen, Kjell Domaas ; Markussen, Sidsel ; Myhr, Anders ; Throne-Holst, Harald ; Sikorski, Pawel ; Wentzel, Alexander ; Nguyen-Tri, Phuong</creatorcontrib><description>The production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0212990</identifier><identifier>PMID: 30990806</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anthropogenic factors ; Bacillus ; Bacteria ; Bacteria - chemistry ; Bacteria - metabolism ; Biology and Life Sciences ; Biotechnology ; Calcium ; Calcium carbonate ; Calcium Carbonate - chemistry ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon Dioxide - toxicity ; Carbon dioxide emissions ; Chemical Precipitation ; Concrete ; Concrete construction ; Construction Industry ; Construction Materials ; Dissolution ; Earth Sciences ; Ecology and Environmental Sciences ; Emissions ; Glucose ; Green buildings ; Humans ; Hydrolysis ; Limestone ; Metabolism ; Microorganisms ; Molds ; Organic acids ; Oxygen ; Physical Sciences ; Physics ; Precipitation ; Quarries ; Recrystallization ; Sand ; Slurries ; Soil - chemistry ; Urea ; Ureas ; Urease ; Urease - chemistry</subject><ispartof>PloS one, 2019, Vol.14 (4), p.e0212990-e0212990</ispartof><rights>2019 Røyne et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2019 Røyne et al 2019 Røyne et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3f8b82465a1999ffcf795f9047cb823c83fc73c0a7adff286c58aa42c46176213</citedby><cites>FETCH-LOGICAL-c480t-3f8b82465a1999ffcf795f9047cb823c83fc73c0a7adff286c58aa42c46176213</cites><orcidid>0000-0002-6868-6251 ; 0000-0002-4933-6643 ; 0000-0001-9413-1623 ; 0000-0002-0606-9725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467371/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467371/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,4009,23846,26546,27902,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30990806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nguyen-Tri, Phuong</contributor><creatorcontrib>Røyne, Anja</creatorcontrib><creatorcontrib>Phua, Yi Jing</creatorcontrib><creatorcontrib>Balzer Le, Simone</creatorcontrib><creatorcontrib>Eikjeland, Ina Grosås</creatorcontrib><creatorcontrib>Josefsen, Kjell Domaas</creatorcontrib><creatorcontrib>Markussen, Sidsel</creatorcontrib><creatorcontrib>Myhr, Anders</creatorcontrib><creatorcontrib>Throne-Holst, Harald</creatorcontrib><creatorcontrib>Sikorski, Pawel</creatorcontrib><creatorcontrib>Wentzel, Alexander</creatorcontrib><title>Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.</description><subject>Anthropogenic factors</subject><subject>Bacillus</subject><subject>Bacteria</subject><subject>Bacteria - chemistry</subject><subject>Bacteria - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium Carbonate - chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - toxicity</subject><subject>Carbon dioxide emissions</subject><subject>Chemical Precipitation</subject><subject>Concrete</subject><subject>Concrete construction</subject><subject>Construction Industry</subject><subject>Construction Materials</subject><subject>Dissolution</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Emissions</subject><subject>Glucose</subject><subject>Green buildings</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Limestone</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Molds</subject><subject>Organic acids</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Quarries</subject><subject>Recrystallization</subject><subject>Sand</subject><subject>Slurries</subject><subject>Soil - chemistry</subject><subject>Urea</subject><subject>Ureas</subject><subject>Urease</subject><subject>Urease - chemistry</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJSzns1l9xbA5IaMVHpUq9LGdr4jhbr5w42A7V3vjpeNls2SJOHr95M2_GfkXxGqMlpjW-2vopDOCWox_MEhFMpERPinMsKVlwgujTk_iseBHjFqGKCs6fF2cUZbJA_Lz4tfb3ENpYQun8fbm6JaXpbYzWD2UzWdfaYVP2kEyw4HJqdH63hxrQM9abBI13NvblJb4i7z-U6ztzko-7mExfwtCWY_DJp91o9lE76ZRVXhbPOnDRvJrPi-L7l8_r1bfFze3X69Wnm4VmAqUF7UQjCOMVYCll1-mullUnEat1xqkWtNM11QhqaLuOCK4rAcCIZhzXnGB6Ubw99M0bRDU_XlSEYFRhyoTIjOsDo_WwVWOwPYSd8mDVH8CHjYKQrHZGgcAYeMVESyuGGICmRuZ703EDlDW518dZbWp602ozpADuUdPHmcHeqY3_qTjjdf7dv-PqYGOygxp8AIWRqIjiQtYsMy5nieB_TCYmlf9NG-dgMH46bCY5rWSVqe_-of5_f3aU9DEG0z2Mi5HaW-5YpfaWU7Plctmb01Ufio4eo78BjGHURQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Røyne, Anja</creator><creator>Phua, Yi Jing</creator><creator>Balzer Le, Simone</creator><creator>Eikjeland, Ina Grosås</creator><creator>Josefsen, Kjell Domaas</creator><creator>Markussen, Sidsel</creator><creator>Myhr, Anders</creator><creator>Throne-Holst, Harald</creator><creator>Sikorski, Pawel</creator><creator>Wentzel, Alexander</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6868-6251</orcidid><orcidid>https://orcid.org/0000-0002-4933-6643</orcidid><orcidid>https://orcid.org/0000-0001-9413-1623</orcidid><orcidid>https://orcid.org/0000-0002-0606-9725</orcidid></search><sort><creationdate>2019</creationdate><title>Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production</title><author>Røyne, Anja ; Phua, Yi Jing ; Balzer Le, Simone ; Eikjeland, Ina Grosås ; Josefsen, Kjell Domaas ; Markussen, Sidsel ; Myhr, Anders ; Throne-Holst, Harald ; Sikorski, Pawel ; Wentzel, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3f8b82465a1999ffcf795f9047cb823c83fc73c0a7adff286c58aa42c46176213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthropogenic factors</topic><topic>Bacillus</topic><topic>Bacteria</topic><topic>Bacteria - chemistry</topic><topic>Bacteria - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium Carbonate - chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - toxicity</topic><topic>Carbon dioxide emissions</topic><topic>Chemical Precipitation</topic><topic>Concrete</topic><topic>Concrete construction</topic><topic>Construction Industry</topic><topic>Construction Materials</topic><topic>Dissolution</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Emissions</topic><topic>Glucose</topic><topic>Green buildings</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Limestone</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Molds</topic><topic>Organic acids</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Quarries</topic><topic>Recrystallization</topic><topic>Sand</topic><topic>Slurries</topic><topic>Soil - chemistry</topic><topic>Urea</topic><topic>Ureas</topic><topic>Urease</topic><topic>Urease - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Røyne, Anja</creatorcontrib><creatorcontrib>Phua, Yi Jing</creatorcontrib><creatorcontrib>Balzer Le, Simone</creatorcontrib><creatorcontrib>Eikjeland, Ina Grosås</creatorcontrib><creatorcontrib>Josefsen, Kjell Domaas</creatorcontrib><creatorcontrib>Markussen, Sidsel</creatorcontrib><creatorcontrib>Myhr, Anders</creatorcontrib><creatorcontrib>Throne-Holst, Harald</creatorcontrib><creatorcontrib>Sikorski, Pawel</creatorcontrib><creatorcontrib>Wentzel, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Røyne, Anja</au><au>Phua, Yi Jing</au><au>Balzer Le, Simone</au><au>Eikjeland, Ina Grosås</au><au>Josefsen, Kjell Domaas</au><au>Markussen, Sidsel</au><au>Myhr, Anders</au><au>Throne-Holst, Harald</au><au>Sikorski, Pawel</au><au>Wentzel, Alexander</au><au>Nguyen-Tri, Phuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>e0212990</spage><epage>e0212990</epage><pages>e0212990-e0212990</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30990806</pmid><doi>10.1371/journal.pone.0212990</doi><orcidid>https://orcid.org/0000-0002-6868-6251</orcidid><orcidid>https://orcid.org/0000-0002-4933-6643</orcidid><orcidid>https://orcid.org/0000-0001-9413-1623</orcidid><orcidid>https://orcid.org/0000-0002-0606-9725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019, Vol.14 (4), p.e0212990-e0212990
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2210513488
source MEDLINE; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anthropogenic factors
Bacillus
Bacteria
Bacteria - chemistry
Bacteria - metabolism
Biology and Life Sciences
Biotechnology
Calcium
Calcium carbonate
Calcium Carbonate - chemistry
Carbon dioxide
Carbon Dioxide - chemistry
Carbon Dioxide - toxicity
Carbon dioxide emissions
Chemical Precipitation
Concrete
Concrete construction
Construction Industry
Construction Materials
Dissolution
Earth Sciences
Ecology and Environmental Sciences
Emissions
Glucose
Green buildings
Humans
Hydrolysis
Limestone
Metabolism
Microorganisms
Molds
Organic acids
Oxygen
Physical Sciences
Physics
Precipitation
Quarries
Recrystallization
Sand
Slurries
Soil - chemistry
Urea
Ureas
Urease
Urease - chemistry
title Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20low%20CO2%20emission%20building%20material%20employing%20bacterial%20metabolism%20(1/2):%20The%20bacterial%20system%20and%20prototype%20production&rft.jtitle=PloS%20one&rft.au=R%C3%B8yne,%20Anja&rft.date=2019&rft.volume=14&rft.issue=4&rft.spage=e0212990&rft.epage=e0212990&rft.pages=e0212990-e0212990&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0212990&rft_dat=%3Cproquest_plos_%3E2210963595%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210513488&rft_id=info:pmid/30990806&rft_doaj_id=oai_doaj_org_article_a811a6548d35404aac3e9654bf6ea34b&rfr_iscdi=true