SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome
Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs and indels (insertion and deletions) are depleted in functionally important sequence elements. Recently, population-scale sequencing e...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-04, Vol.14 (4), p.e0214816-e0214816 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0214816 |
---|---|
container_issue | 4 |
container_start_page | e0214816 |
container_title | PloS one |
container_volume | 14 |
creator | Neininger, Kerstin Marschall, Tobias Helms, Volkhard |
description | Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs and indels (insertion and deletions) are depleted in functionally important sequence elements. Recently, population-scale sequencing efforts such as the 1000 Genomes Project and the Genome of the Netherlands Project have catalogued large numbers of sequence variants. Here, we present a systematic analysis of the polymorphisms reported by these two projects in different coding and non-coding genomic elements of the human genome (intergenic regions, CpG islands, promoters, 5' UTRs, coding exons, 3' UTRs, introns, and intragenic regions). Furthermore, we were especially interested in the distribution of SNPs and indels in direct vicinity to the transcription start site (TSS) and translation start site (CSS). Thereby, we discovered an enrichment of dinucleotides CpG and CpA and an accumulation of SNPs at base position -1 relative to the TSS that involved primarily CpG and CpA dinucleotides. Genes having a CpG dinucleotide at TSS position -1 were enriched in the functional GO terms "Phosphoprotein", "Alternative splicing", and "Protein binding". Focusing on the CSS, we compared SNP patterns in the flanking regions of canonical and alternative AUG and near-cognate start sites where we considered alternative starts previously identified by experimental ribosome profiling. We observed similar conservation patterns of canonical and alternative translation start sites, which underlines the importance of alternative translation mechanisms for cellular function. |
doi_str_mv | 10.1371/journal.pone.0214816 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2209414595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582174546</galeid><doaj_id>oai_doaj_org_article_da74bf3ca35e4674b82b03958b49fa32</doaj_id><sourcerecordid>A582174546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7671b6f9bc657c60d0e65a655d073dbbaf5805b9aa2cae705da2bdb80eaab39d3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWH2ElukKqKw0oVRRS4tSa2s-uV197GTgVvwGPjNGm1Qb1AuYg1_v5_7PFMlj3HaIlpid9tfd85sMu9d3qJCC4qzB9kx7imZMEJog8P1kfZkxC2CDFacf44O6KoLiuCy-Psz-WXrzk4lRuntM3bTl_12kmjQw4xjx24IDuzj8a7PEToYh5MHDaTJAESnHdGgh0DNup0pmiu9Si1cCM0zkQzLke1cXnc6HzT78Dla-38Tj_NHrVgg342_U-yHx8_fD_7vDi_-LQ6Oz1fSF6TuCh5iRve1o3krJQcKaQ5A86YQiVVTQMtqxBragAiQZeIKSCNaiqkARpaK3qSvRx999YHMRUxCEJQXeCC1SwRq5FQHrZi35kddL-FByNuAr5bi1QHI60WCsqiaakEynTB07oiDaI1q5qiboGS5PV-ytY3O62kdqkudmY633FmI9b-WvCCY0J4MngzGXQ-vUyIYmeC1NaC074fz81RjUmR0Ff_oPffbqLWkC5gXOtTXjmYilM29ETBiiHt8h4qfUrvjEwd15oUnwnezgSJifpXXEMfglhdfvt_9uLnnH19wG50arFN8LYfminMwWIEZedD6HR7V2SMxDAwt9UQw8CIaWCS7MXhA92JbieE_gXAAhNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209414595</pqid></control><display><type>article</type><title>SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Neininger, Kerstin ; Marschall, Tobias ; Helms, Volkhard</creator><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Neininger, Kerstin ; Marschall, Tobias ; Helms, Volkhard ; Kalendar, Ruslan</creatorcontrib><description>Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs and indels (insertion and deletions) are depleted in functionally important sequence elements. Recently, population-scale sequencing efforts such as the 1000 Genomes Project and the Genome of the Netherlands Project have catalogued large numbers of sequence variants. Here, we present a systematic analysis of the polymorphisms reported by these two projects in different coding and non-coding genomic elements of the human genome (intergenic regions, CpG islands, promoters, 5' UTRs, coding exons, 3' UTRs, introns, and intragenic regions). Furthermore, we were especially interested in the distribution of SNPs and indels in direct vicinity to the transcription start site (TSS) and translation start site (CSS). Thereby, we discovered an enrichment of dinucleotides CpG and CpA and an accumulation of SNPs at base position -1 relative to the TSS that involved primarily CpG and CpA dinucleotides. Genes having a CpG dinucleotide at TSS position -1 were enriched in the functional GO terms "Phosphoprotein", "Alternative splicing", and "Protein binding". Focusing on the CSS, we compared SNP patterns in the flanking regions of canonical and alternative AUG and near-cognate start sites where we considered alternative starts previously identified by experimental ribosome profiling. We observed similar conservation patterns of canonical and alternative translation start sites, which underlines the importance of alternative translation mechanisms for cellular function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0214816</identifier><identifier>PMID: 30978217</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3' Untranslated Regions ; 5' Untranslated Regions ; Alternative Splicing ; Binding sites ; Bioinformatics ; Biological evolution ; Biology and life sciences ; Conservation ; CpG Islands ; Criminal investigation ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA, Intergenic ; Evolutionary conservation ; Exons ; Gene Frequency ; Gene sequencing ; Genes ; Genetic diversity ; Genetic polymorphisms ; Genome, Human ; Genomes ; Genomics ; Human genome ; Humans ; INDEL Mutation ; Insertion ; Introns ; Mutation ; Nucleotide sequence ; Parameter estimation ; Peptide Chain Initiation, Translational ; Phenotypic variations ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; Protein binding ; Proteins ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Transcription ; Transcription (Genetics) ; Transcription Initiation Site ; Translation ; Translation (Genetics) ; Translation initiation</subject><ispartof>PloS one, 2019-04, Vol.14 (4), p.e0214816-e0214816</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Neininger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Neininger et al 2019 Neininger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7671b6f9bc657c60d0e65a655d073dbbaf5805b9aa2cae705da2bdb80eaab39d3</citedby><cites>FETCH-LOGICAL-c692t-7671b6f9bc657c60d0e65a655d073dbbaf5805b9aa2cae705da2bdb80eaab39d3</cites><orcidid>0000-0002-2180-9154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461226/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461226/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30978217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Neininger, Kerstin</creatorcontrib><creatorcontrib>Marschall, Tobias</creatorcontrib><creatorcontrib>Helms, Volkhard</creatorcontrib><title>SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs and indels (insertion and deletions) are depleted in functionally important sequence elements. Recently, population-scale sequencing efforts such as the 1000 Genomes Project and the Genome of the Netherlands Project have catalogued large numbers of sequence variants. Here, we present a systematic analysis of the polymorphisms reported by these two projects in different coding and non-coding genomic elements of the human genome (intergenic regions, CpG islands, promoters, 5' UTRs, coding exons, 3' UTRs, introns, and intragenic regions). Furthermore, we were especially interested in the distribution of SNPs and indels in direct vicinity to the transcription start site (TSS) and translation start site (CSS). Thereby, we discovered an enrichment of dinucleotides CpG and CpA and an accumulation of SNPs at base position -1 relative to the TSS that involved primarily CpG and CpA dinucleotides. Genes having a CpG dinucleotide at TSS position -1 were enriched in the functional GO terms "Phosphoprotein", "Alternative splicing", and "Protein binding". Focusing on the CSS, we compared SNP patterns in the flanking regions of canonical and alternative AUG and near-cognate start sites where we considered alternative starts previously identified by experimental ribosome profiling. We observed similar conservation patterns of canonical and alternative translation start sites, which underlines the importance of alternative translation mechanisms for cellular function.</description><subject>3' Untranslated Regions</subject><subject>5' Untranslated Regions</subject><subject>Alternative Splicing</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biological evolution</subject><subject>Biology and life sciences</subject><subject>Conservation</subject><subject>CpG Islands</subject><subject>Criminal investigation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA, Intergenic</subject><subject>Evolutionary conservation</subject><subject>Exons</subject><subject>Gene Frequency</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic polymorphisms</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human genome</subject><subject>Humans</subject><subject>INDEL Mutation</subject><subject>Insertion</subject><subject>Introns</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Parameter estimation</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Phenotypic variations</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Promoter Regions, Genetic</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription Initiation Site</subject><subject>Translation</subject><subject>Translation (Genetics)</subject><subject>Translation initiation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWH2ElukKqKw0oVRRS4tSa2s-uV197GTgVvwGPjNGm1Qb1AuYg1_v5_7PFMlj3HaIlpid9tfd85sMu9d3qJCC4qzB9kx7imZMEJog8P1kfZkxC2CDFacf44O6KoLiuCy-Psz-WXrzk4lRuntM3bTl_12kmjQw4xjx24IDuzj8a7PEToYh5MHDaTJAESnHdGgh0DNup0pmiu9Si1cCM0zkQzLke1cXnc6HzT78Dla-38Tj_NHrVgg342_U-yHx8_fD_7vDi_-LQ6Oz1fSF6TuCh5iRve1o3krJQcKaQ5A86YQiVVTQMtqxBragAiQZeIKSCNaiqkARpaK3qSvRx999YHMRUxCEJQXeCC1SwRq5FQHrZi35kddL-FByNuAr5bi1QHI60WCsqiaakEynTB07oiDaI1q5qiboGS5PV-ytY3O62kdqkudmY633FmI9b-WvCCY0J4MngzGXQ-vUyIYmeC1NaC074fz81RjUmR0Ff_oPffbqLWkC5gXOtTXjmYilM29ETBiiHt8h4qfUrvjEwd15oUnwnezgSJifpXXEMfglhdfvt_9uLnnH19wG50arFN8LYfminMwWIEZedD6HR7V2SMxDAwt9UQw8CIaWCS7MXhA92JbieE_gXAAhNs</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Neininger, Kerstin</creator><creator>Marschall, Tobias</creator><creator>Helms, Volkhard</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2180-9154</orcidid></search><sort><creationdate>20190412</creationdate><title>SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome</title><author>Neininger, Kerstin ; Marschall, Tobias ; Helms, Volkhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7671b6f9bc657c60d0e65a655d073dbbaf5805b9aa2cae705da2bdb80eaab39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3' Untranslated Regions</topic><topic>5' Untranslated Regions</topic><topic>Alternative Splicing</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biological evolution</topic><topic>Biology and life sciences</topic><topic>Conservation</topic><topic>CpG Islands</topic><topic>Criminal investigation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA, Intergenic</topic><topic>Evolutionary conservation</topic><topic>Exons</topic><topic>Gene Frequency</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic polymorphisms</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human genome</topic><topic>Humans</topic><topic>INDEL Mutation</topic><topic>Insertion</topic><topic>Introns</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Parameter estimation</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Phenotypic variations</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Promoter Regions, Genetic</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription Initiation Site</topic><topic>Translation</topic><topic>Translation (Genetics)</topic><topic>Translation initiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neininger, Kerstin</creatorcontrib><creatorcontrib>Marschall, Tobias</creatorcontrib><creatorcontrib>Helms, Volkhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neininger, Kerstin</au><au>Marschall, Tobias</au><au>Helms, Volkhard</au><au>Kalendar, Ruslan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-04-12</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>e0214816</spage><epage>e0214816</epage><pages>e0214816-e0214816</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs and indels (insertion and deletions) are depleted in functionally important sequence elements. Recently, population-scale sequencing efforts such as the 1000 Genomes Project and the Genome of the Netherlands Project have catalogued large numbers of sequence variants. Here, we present a systematic analysis of the polymorphisms reported by these two projects in different coding and non-coding genomic elements of the human genome (intergenic regions, CpG islands, promoters, 5' UTRs, coding exons, 3' UTRs, introns, and intragenic regions). Furthermore, we were especially interested in the distribution of SNPs and indels in direct vicinity to the transcription start site (TSS) and translation start site (CSS). Thereby, we discovered an enrichment of dinucleotides CpG and CpA and an accumulation of SNPs at base position -1 relative to the TSS that involved primarily CpG and CpA dinucleotides. Genes having a CpG dinucleotide at TSS position -1 were enriched in the functional GO terms "Phosphoprotein", "Alternative splicing", and "Protein binding". Focusing on the CSS, we compared SNP patterns in the flanking regions of canonical and alternative AUG and near-cognate start sites where we considered alternative starts previously identified by experimental ribosome profiling. We observed similar conservation patterns of canonical and alternative translation start sites, which underlines the importance of alternative translation mechanisms for cellular function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30978217</pmid><doi>10.1371/journal.pone.0214816</doi><tpages>e0214816</tpages><orcidid>https://orcid.org/0000-0002-2180-9154</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-04, Vol.14 (4), p.e0214816-e0214816 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2209414595 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Public Library of Science; PubMed Central; EZB Electronic Journals Library |
subjects | 3' Untranslated Regions 5' Untranslated Regions Alternative Splicing Binding sites Bioinformatics Biological evolution Biology and life sciences Conservation CpG Islands Criminal investigation Deoxyribonucleic acid DNA DNA methylation DNA, Intergenic Evolutionary conservation Exons Gene Frequency Gene sequencing Genes Genetic diversity Genetic polymorphisms Genome, Human Genomes Genomics Human genome Humans INDEL Mutation Insertion Introns Mutation Nucleotide sequence Parameter estimation Peptide Chain Initiation, Translational Phenotypic variations Polymorphism, Single Nucleotide Promoter Regions, Genetic Protein binding Proteins Single nucleotide polymorphisms Single-nucleotide polymorphism Transcription Transcription (Genetics) Transcription Initiation Site Translation Translation (Genetics) Translation initiation |
title | SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%20and%20indel%20frequencies%20at%20transcription%20start%20sites%20and%20at%20canonical%20and%20alternative%20translation%20initiation%20sites%20in%20the%20human%20genome&rft.jtitle=PloS%20one&rft.au=Neininger,%20Kerstin&rft.date=2019-04-12&rft.volume=14&rft.issue=4&rft.spage=e0214816&rft.epage=e0214816&rft.pages=e0214816-e0214816&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0214816&rft_dat=%3Cgale_plos_%3EA582174546%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209414595&rft_id=info:pmid/30978217&rft_galeid=A582174546&rft_doaj_id=oai_doaj_org_article_da74bf3ca35e4674b82b03958b49fa32&rfr_iscdi=true |