A multi hidden recurrent neural network with a modified grey wolf optimizer

Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-03, Vol.14 (3), p.e0213237
Hauptverfasser: Rashid, Tarik A, Abbas, Dosti K, Turel, Yalin K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e0213237
container_title PloS one
container_volume 14
creator Rashid, Tarik A
Abbas, Dosti K
Turel, Yalin K
description Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.
doi_str_mv 10.1371/journal.pone.0213237
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2199323263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580304644</galeid><doaj_id>oai_doaj_org_article_a6ef0d7ea1004279821e3d125acff74c</doaj_id><sourcerecordid>A580304644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-333ef23622046536a802ffe5d8764e657140ab9a7f230ce7e9290a3f610f6ca53</originalsourceid><addsrcrecordid>eNqNktuL1DAUxoso7kX_A9GAsODDjLm0SfsiDIuXwYUFb68hm560GdtmNkkd17_erNNdpqAgeUg4-Z0vJx9flj0jeEmYIK83bvSD6pZbN8ASU8IoEw-yY1IxuuAUs4cH56PsJIQNxgUrOX-cHTFcEUGK4jj7uEL92EWLWlvXMCAPevQehogGGL3q0hZ3zn9HOxtbpFDvamss1KjxcIN2rjPIbaPt7S_wT7JHRnUBnk77afb13dsv5x8WF5fv1-eri4XmFY0LxhgYyjilOOcF46rE1Bgo6lLwHHghSI7VVaVEgrAGARWtsGKGE2y4VgU7zV7sdbedC3LyIUhKqvRfRjlLxHpP1E5t5NbbXvkb6ZSVfwrON1L5aHUHUnEwuBagCMY5FVVJCbCa0EJpY0Suk9ab6bXxqodaJ2-SLzPR-c1gW9m4H5LnjIuKJoGXk4B31yOE-I-RJ6pRaSo7GJfEdG-DlquixCx5leeJWv6FSquG3uqUBGNTfdbwataQmAg_Y6PGEOT686f_Zy-_zdmzA7YF1cU2uG6M1g1hDuZ7UHsXggdz7xzB8jbId27I2yDLKcip7fmh6_dNd8llvwH5nOy6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199323263</pqid></control><display><type>article</type><title>A multi hidden recurrent neural network with a modified grey wolf optimizer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rashid, Tarik A ; Abbas, Dosti K ; Turel, Yalin K</creator><contributor>Fred, A Lenin</contributor><creatorcontrib>Rashid, Tarik A ; Abbas, Dosti K ; Turel, Yalin K ; Fred, A Lenin</creatorcontrib><description>Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0213237</identifier><identifier>PMID: 30917155</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Area Under Curve ; Artificial intelligence ; Artificial neural networks ; Biology and Life Sciences ; College students ; Colleges &amp; universities ; Comparative analysis ; Computer and Information Sciences ; Decision making ; Early warning systems ; Engineering and Technology ; Humans ; Hybrid systems ; Logistic Models ; Model accuracy ; Neural networks ; Neural Networks, Computer ; Physical Sciences ; Problems ; Recurrent neural networks ; Research and Analysis Methods ; ROC Curve ; Students</subject><ispartof>PloS one, 2019-03, Vol.14 (3), p.e0213237</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Rashid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Rashid et al 2019 Rashid et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-333ef23622046536a802ffe5d8764e657140ab9a7f230ce7e9290a3f610f6ca53</citedby><cites>FETCH-LOGICAL-c692t-333ef23622046536a802ffe5d8764e657140ab9a7f230ce7e9290a3f610f6ca53</cites><orcidid>0000-0002-8661-258X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30917155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fred, A Lenin</contributor><creatorcontrib>Rashid, Tarik A</creatorcontrib><creatorcontrib>Abbas, Dosti K</creatorcontrib><creatorcontrib>Turel, Yalin K</creatorcontrib><title>A multi hidden recurrent neural network with a modified grey wolf optimizer</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>College students</subject><subject>Colleges &amp; universities</subject><subject>Comparative analysis</subject><subject>Computer and Information Sciences</subject><subject>Decision making</subject><subject>Early warning systems</subject><subject>Engineering and Technology</subject><subject>Humans</subject><subject>Hybrid systems</subject><subject>Logistic Models</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Physical Sciences</subject><subject>Problems</subject><subject>Recurrent neural networks</subject><subject>Research and Analysis Methods</subject><subject>ROC Curve</subject><subject>Students</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuL1DAUxoso7kX_A9GAsODDjLm0SfsiDIuXwYUFb68hm560GdtmNkkd17_erNNdpqAgeUg4-Z0vJx9flj0jeEmYIK83bvSD6pZbN8ASU8IoEw-yY1IxuuAUs4cH56PsJIQNxgUrOX-cHTFcEUGK4jj7uEL92EWLWlvXMCAPevQehogGGL3q0hZ3zn9HOxtbpFDvamss1KjxcIN2rjPIbaPt7S_wT7JHRnUBnk77afb13dsv5x8WF5fv1-eri4XmFY0LxhgYyjilOOcF46rE1Bgo6lLwHHghSI7VVaVEgrAGARWtsGKGE2y4VgU7zV7sdbedC3LyIUhKqvRfRjlLxHpP1E5t5NbbXvkb6ZSVfwrON1L5aHUHUnEwuBagCMY5FVVJCbCa0EJpY0Suk9ab6bXxqodaJ2-SLzPR-c1gW9m4H5LnjIuKJoGXk4B31yOE-I-RJ6pRaSo7GJfEdG-DlquixCx5leeJWv6FSquG3uqUBGNTfdbwataQmAg_Y6PGEOT686f_Zy-_zdmzA7YF1cU2uG6M1g1hDuZ7UHsXggdz7xzB8jbId27I2yDLKcip7fmh6_dNd8llvwH5nOy6</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Rashid, Tarik A</creator><creator>Abbas, Dosti K</creator><creator>Turel, Yalin K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8661-258X</orcidid></search><sort><creationdate>20190327</creationdate><title>A multi hidden recurrent neural network with a modified grey wolf optimizer</title><author>Rashid, Tarik A ; Abbas, Dosti K ; Turel, Yalin K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-333ef23622046536a802ffe5d8764e657140ab9a7f230ce7e9290a3f610f6ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>College students</topic><topic>Colleges &amp; universities</topic><topic>Comparative analysis</topic><topic>Computer and Information Sciences</topic><topic>Decision making</topic><topic>Early warning systems</topic><topic>Engineering and Technology</topic><topic>Humans</topic><topic>Hybrid systems</topic><topic>Logistic Models</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Physical Sciences</topic><topic>Problems</topic><topic>Recurrent neural networks</topic><topic>Research and Analysis Methods</topic><topic>ROC Curve</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Tarik A</creatorcontrib><creatorcontrib>Abbas, Dosti K</creatorcontrib><creatorcontrib>Turel, Yalin K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Tarik A</au><au>Abbas, Dosti K</au><au>Turel, Yalin K</au><au>Fred, A Lenin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi hidden recurrent neural network with a modified grey wolf optimizer</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>e0213237</spage><pages>e0213237-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30917155</pmid><doi>10.1371/journal.pone.0213237</doi><tpages>e0213237</tpages><orcidid>https://orcid.org/0000-0002-8661-258X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-03, Vol.14 (3), p.e0213237
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2199323263
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Area Under Curve
Artificial intelligence
Artificial neural networks
Biology and Life Sciences
College students
Colleges & universities
Comparative analysis
Computer and Information Sciences
Decision making
Early warning systems
Engineering and Technology
Humans
Hybrid systems
Logistic Models
Model accuracy
Neural networks
Neural Networks, Computer
Physical Sciences
Problems
Recurrent neural networks
Research and Analysis Methods
ROC Curve
Students
title A multi hidden recurrent neural network with a modified grey wolf optimizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi%20hidden%20recurrent%20neural%20network%20with%20a%20modified%20grey%20wolf%20optimizer&rft.jtitle=PloS%20one&rft.au=Rashid,%20Tarik%20A&rft.date=2019-03-27&rft.volume=14&rft.issue=3&rft.spage=e0213237&rft.pages=e0213237-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0213237&rft_dat=%3Cgale_plos_%3EA580304644%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199323263&rft_id=info:pmid/30917155&rft_galeid=A580304644&rft_doaj_id=oai_doaj_org_article_a6ef0d7ea1004279821e3d125acff74c&rfr_iscdi=true