Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting

Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-03, Vol.14 (3), p.e0213374-e0213374
Hauptverfasser: Bowles, Kathryn R, Tcw, Julia, Qian, Lu, Jadow, Benjamin M, Goate, Alison M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0213374
container_issue 3
container_start_page e0213374
container_title PloS one
container_volume 14
creator Bowles, Kathryn R
Tcw, Julia
Qian, Lu
Jadow, Benjamin M
Goate, Alison M
description Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.
doi_str_mv 10.1371/journal.pone.0213374
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2199320650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580304579</galeid><doaj_id>oai_doaj_org_article_e51257653a5c472182b710803aa284e0</doaj_id><sourcerecordid>A580304579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-93d1d4c4e594900532ba65c141d3d961995ee198bf53ecdf1841a47d6ae18f293</originalsourceid><addsrcrecordid>eNqNk0tr3DAUhU1padK0_6C0gkJpFzOVLMmPTSGEPgYCgfSxFRr52qPBliZ6DM2i_71yxwnjkkXxQubqO0dXx75Z9pLgJaEl-bC10RnZL3fWwBLnhNKSPcpOSU3zRZFj-vjo_SR75v0WY06ronianVBck5Jwepr9voYmKmjQXjot17rX4RbZFhmITvZo52wHRgfrkIK-90iaBukhlfdJs4vuCLepG6RiH6IDj6LXpkOD7AwErZBUQe9lSKLRB3nrQtp_nj1pZe_hxbSeZT8-f_p-8XVxefVldXF-uVAlr8Kipg1pmGLAa1aPt8jXsuCKMNLQpi5IXXMAUlfrllNQTUsqRiQrm0ICqdq8pmfZ64PvrrdeTMl5kSclzXHBcSJWB6Kxcit2Tg_S3QortfhbsK4TMrWsehDASc7LglPJFStzUuXrkuAKUynzisHo9XE6La4HaBSYkLKcmc53jN6Izu5FwWhRYpIM3k0Gzt5E8EEM2o-5SQM2HvomFSWEJfTNP-jDt5uoTqYLaNPadK4aTcU5T51jxssxpeUDVHoaGLRKv1mrU30meD8TJCbAr9DJ6L1Yfbv-f_bq55x9e8RuQPZh420fg7bGz0F2AJWz3jto70MmWIxTcpeGGKdETFOSZK-OP9C96G4s6B9XNQ2Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199320650</pqid></control><display><type>article</type><title>Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bowles, Kathryn R ; Tcw, Julia ; Qian, Lu ; Jadow, Benjamin M ; Goate, Alison M</creator><contributor>Hu, Wenhui</contributor><creatorcontrib>Bowles, Kathryn R ; Tcw, Julia ; Qian, Lu ; Jadow, Benjamin M ; Goate, Alison M ; Hu, Wenhui</creatorcontrib><description>Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (&lt;2-3) and late (&gt;10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0213374</identifier><identifier>PMID: 30917153</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>AC133 Antigen - metabolism ; Analysis ; Biology and Life Sciences ; Brain ; Cell culture ; Cell Differentiation ; Cell Line ; Cell lines ; Cell Separation - methods ; Cells (Biology) ; Cellular Reprogramming Techniques ; Cytology equipment ; Disease ; EDTA ; Epigenetic inheritance ; Flow cytometry ; Flow Cytometry - methods ; Fluorescence ; Gene expression ; Homogeneity ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Magnetics ; Medicine ; Nerve Tissue Proteins - metabolism ; Nervous system ; Nestin - metabolism ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neurosciences ; Progenitor cells ; Purity ; Receptors, Nerve Growth Factor - metabolism ; Research and Analysis Methods ; SOXB1 Transcription Factors - metabolism ; Stem cells ; Variability</subject><ispartof>PloS one, 2019-03, Vol.14 (3), p.e0213374-e0213374</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Bowles et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Bowles et al 2019 Bowles et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-93d1d4c4e594900532ba65c141d3d961995ee198bf53ecdf1841a47d6ae18f293</citedby><cites>FETCH-LOGICAL-c758t-93d1d4c4e594900532ba65c141d3d961995ee198bf53ecdf1841a47d6ae18f293</cites><orcidid>0000-0002-0576-2472 ; 0000-0001-6619-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436701/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436701/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30917153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hu, Wenhui</contributor><creatorcontrib>Bowles, Kathryn R</creatorcontrib><creatorcontrib>Tcw, Julia</creatorcontrib><creatorcontrib>Qian, Lu</creatorcontrib><creatorcontrib>Jadow, Benjamin M</creatorcontrib><creatorcontrib>Goate, Alison M</creatorcontrib><title>Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (&lt;2-3) and late (&gt;10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.</description><subject>AC133 Antigen - metabolism</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell Separation - methods</subject><subject>Cells (Biology)</subject><subject>Cellular Reprogramming Techniques</subject><subject>Cytology equipment</subject><subject>Disease</subject><subject>EDTA</subject><subject>Epigenetic inheritance</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Magnetics</subject><subject>Medicine</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nervous system</subject><subject>Nestin - metabolism</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Progenitor cells</subject><subject>Purity</subject><subject>Receptors, Nerve Growth Factor - metabolism</subject><subject>Research and Analysis Methods</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Stem cells</subject><subject>Variability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAUhU1padK0_6C0gkJpFzOVLMmPTSGEPgYCgfSxFRr52qPBliZ6DM2i_71yxwnjkkXxQubqO0dXx75Z9pLgJaEl-bC10RnZL3fWwBLnhNKSPcpOSU3zRZFj-vjo_SR75v0WY06ronianVBck5Jwepr9voYmKmjQXjot17rX4RbZFhmITvZo52wHRgfrkIK-90iaBukhlfdJs4vuCLepG6RiH6IDj6LXpkOD7AwErZBUQe9lSKLRB3nrQtp_nj1pZe_hxbSeZT8-f_p-8XVxefVldXF-uVAlr8Kipg1pmGLAa1aPt8jXsuCKMNLQpi5IXXMAUlfrllNQTUsqRiQrm0ICqdq8pmfZ64PvrrdeTMl5kSclzXHBcSJWB6Kxcit2Tg_S3QortfhbsK4TMrWsehDASc7LglPJFStzUuXrkuAKUynzisHo9XE6La4HaBSYkLKcmc53jN6Izu5FwWhRYpIM3k0Gzt5E8EEM2o-5SQM2HvomFSWEJfTNP-jDt5uoTqYLaNPadK4aTcU5T51jxssxpeUDVHoaGLRKv1mrU30meD8TJCbAr9DJ6L1Yfbv-f_bq55x9e8RuQPZh420fg7bGz0F2AJWz3jto70MmWIxTcpeGGKdETFOSZK-OP9C96G4s6B9XNQ2Y</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Bowles, Kathryn R</creator><creator>Tcw, Julia</creator><creator>Qian, Lu</creator><creator>Jadow, Benjamin M</creator><creator>Goate, Alison M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0576-2472</orcidid><orcidid>https://orcid.org/0000-0001-6619-0976</orcidid></search><sort><creationdate>20190327</creationdate><title>Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting</title><author>Bowles, Kathryn R ; Tcw, Julia ; Qian, Lu ; Jadow, Benjamin M ; Goate, Alison M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-93d1d4c4e594900532ba65c141d3d961995ee198bf53ecdf1841a47d6ae18f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AC133 Antigen - metabolism</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell Separation - methods</topic><topic>Cells (Biology)</topic><topic>Cellular Reprogramming Techniques</topic><topic>Cytology equipment</topic><topic>Disease</topic><topic>EDTA</topic><topic>Epigenetic inheritance</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Magnetics</topic><topic>Medicine</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nervous system</topic><topic>Nestin - metabolism</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Progenitor cells</topic><topic>Purity</topic><topic>Receptors, Nerve Growth Factor - metabolism</topic><topic>Research and Analysis Methods</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Stem cells</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowles, Kathryn R</creatorcontrib><creatorcontrib>Tcw, Julia</creatorcontrib><creatorcontrib>Qian, Lu</creatorcontrib><creatorcontrib>Jadow, Benjamin M</creatorcontrib><creatorcontrib>Goate, Alison M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowles, Kathryn R</au><au>Tcw, Julia</au><au>Qian, Lu</au><au>Jadow, Benjamin M</au><au>Goate, Alison M</au><au>Hu, Wenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>e0213374</spage><epage>e0213374</epage><pages>e0213374-e0213374</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (&lt;2-3) and late (&gt;10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30917153</pmid><doi>10.1371/journal.pone.0213374</doi><tpages>e0213374</tpages><orcidid>https://orcid.org/0000-0002-0576-2472</orcidid><orcidid>https://orcid.org/0000-0001-6619-0976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-03, Vol.14 (3), p.e0213374-e0213374
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2199320650
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects AC133 Antigen - metabolism
Analysis
Biology and Life Sciences
Brain
Cell culture
Cell Differentiation
Cell Line
Cell lines
Cell Separation - methods
Cells (Biology)
Cellular Reprogramming Techniques
Cytology equipment
Disease
EDTA
Epigenetic inheritance
Flow cytometry
Flow Cytometry - methods
Fluorescence
Gene expression
Homogeneity
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Magnetics
Medicine
Nerve Tissue Proteins - metabolism
Nervous system
Nestin - metabolism
Neural stem cells
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurons
Neurons - cytology
Neurons - metabolism
Neurosciences
Progenitor cells
Purity
Receptors, Nerve Growth Factor - metabolism
Research and Analysis Methods
SOXB1 Transcription Factors - metabolism
Stem cells
Variability
title Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20variability%20of%20neural%20progenitor%20cells%20and%20improved%20purity%20of%20neuronal%20cultures%20using%20magnetic%20activated%20cell%20sorting&rft.jtitle=PloS%20one&rft.au=Bowles,%20Kathryn%20R&rft.date=2019-03-27&rft.volume=14&rft.issue=3&rft.spage=e0213374&rft.epage=e0213374&rft.pages=e0213374-e0213374&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0213374&rft_dat=%3Cgale_plos_%3EA580304579%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199320650&rft_id=info:pmid/30917153&rft_galeid=A580304579&rft_doaj_id=oai_doaj_org_article_e51257653a5c472182b710803aa284e0&rfr_iscdi=true