Defects in assembly explain reduced antiviral activity of the G249D polymorphism in human TRIM5α

TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-03, Vol.14 (3), p.e0212888-e0212888
Hauptverfasser: Kömürlü, Sevnur, Bradley, Margret, Smolin, Nikolai, Imam, Sabrina, Pauszek, 3rd, Raymond F, Robia, Seth L, Millar, David, Nakayama, Emi E, Shioda, Tatsuo, Campbell, Edward M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0212888
container_issue 3
container_start_page e0212888
container_title PloS one
container_volume 14
creator Kömürlü, Sevnur
Bradley, Margret
Smolin, Nikolai
Imam, Sabrina
Pauszek, 3rd, Raymond F
Robia, Seth L
Millar, David
Nakayama, Emi E
Shioda, Tatsuo
Campbell, Edward M
description TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is evidenced by a single nucleotide polymorphism in huTRIM5α which substitutes aspartic acid to glycine at position 249 (G249D) in the L2 region and is associated with higher susceptibility to HIV-1 infection. To understand the mechanistic basis for the reduced antiviral activity, we employed biophysical and cell biological methods coupled with molecular dynamics simulations to compare WT and the G249D polymorphism of huTRIM5α. We investigated the differences in conformational dynamics of rhesus and huTRIM5α Coiled Coil-Linker 2 (CC-L2) dimers utilizing circular dichroism and single molecule-Fluorescence Energy Transfer (sm-FRET). These methods revealed that the G249D dimer exhibits secondary structure and conformational dynamics similar to WT huTRIM5α. Homology modelling revealed that G249 was present on the hairpin of the antiparallel dimer, in a position which may act to stabilize the adjacent BBox2 domain which mediates the inter-dimeric contacts required for the formation of TRIM5 assemblies. We therefore asked if the G249D mutant forms assemblies in cells with the same efficiency as WT protein by expressing these proteins as YFP fusions and quantifying the number of assemblies in cells. In cells expressing comparable amounts of protein, the G249D mutant formed fewer assemblies than WT protein, in agreement with our homology modeling predictions and molecular dynamics simulations of dimers and higher oligomers of TRIM5α, providing a mechanistic explanation of the reduced antiviral activity of the G249D polymorphism.
doi_str_mv 10.1371/journal.pone.0212888
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2194691273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb7efc497121450da84a870033e43ddf</doaj_id><sourcerecordid>2194691273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8194adb385d2d465853e5aad96dc4d605aef719ba35246403d7764256c27f7763</originalsourceid><addsrcrecordid>eNptkt1qFDEUxwdRbK2-gWjAG292zXcyN4K02i5UBKnX4WyS6c6SmYzJTHEfyxfxmcx2p6UVr3I4-Z_f-eBfVa8JXhKmyIdtnFIPYTnE3i8xJVRr_aQ6JjWjC0kxe_ogPqpe5LzFWDAt5fPqiGGta6L0cQVnvvF2zKjtEeTsu3XYIf9rCFASybvJeoegH9ubNkFAYPfRuEOxQePGo3PK6zM0xLDrYho2be72oM3UQY-uvq--ij-_X1bPGgjZv5rfk-rHl89XpxeLy2_nq9NPlwvLlRgXmtQc3Jpp4ajjUmjBvABwtXSWO4kF-EaReg1MUC45Zk4pyamQlqqmhOykenvgDiFmM18nG1q4siZUsaJYHRQuwtYMqe0g7UyE1twmYro2kMbWBm_sWvnG8loRSrjADjQHrTBmzHPmXFNYH-du07rzzvp-LPd5BH3807cbcx1vTJmZF2IBvJ8BKf6cfB5N12brQ4Dex-kwt9CcUlGk7_6R_n87flDZFHNOvrkfhmCzd8xdldk7xsyOKWVvHi5yX3RnEfYXd4S-2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194691273</pqid></control><display><type>article</type><title>Defects in assembly explain reduced antiviral activity of the G249D polymorphism in human TRIM5α</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kömürlü, Sevnur ; Bradley, Margret ; Smolin, Nikolai ; Imam, Sabrina ; Pauszek, 3rd, Raymond F ; Robia, Seth L ; Millar, David ; Nakayama, Emi E ; Shioda, Tatsuo ; Campbell, Edward M</creator><contributor>Menéndez-Arias, Luis</contributor><creatorcontrib>Kömürlü, Sevnur ; Bradley, Margret ; Smolin, Nikolai ; Imam, Sabrina ; Pauszek, 3rd, Raymond F ; Robia, Seth L ; Millar, David ; Nakayama, Emi E ; Shioda, Tatsuo ; Campbell, Edward M ; Menéndez-Arias, Luis</creatorcontrib><description>TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is evidenced by a single nucleotide polymorphism in huTRIM5α which substitutes aspartic acid to glycine at position 249 (G249D) in the L2 region and is associated with higher susceptibility to HIV-1 infection. To understand the mechanistic basis for the reduced antiviral activity, we employed biophysical and cell biological methods coupled with molecular dynamics simulations to compare WT and the G249D polymorphism of huTRIM5α. We investigated the differences in conformational dynamics of rhesus and huTRIM5α Coiled Coil-Linker 2 (CC-L2) dimers utilizing circular dichroism and single molecule-Fluorescence Energy Transfer (sm-FRET). These methods revealed that the G249D dimer exhibits secondary structure and conformational dynamics similar to WT huTRIM5α. Homology modelling revealed that G249 was present on the hairpin of the antiparallel dimer, in a position which may act to stabilize the adjacent BBox2 domain which mediates the inter-dimeric contacts required for the formation of TRIM5 assemblies. We therefore asked if the G249D mutant forms assemblies in cells with the same efficiency as WT protein by expressing these proteins as YFP fusions and quantifying the number of assemblies in cells. In cells expressing comparable amounts of protein, the G249D mutant formed fewer assemblies than WT protein, in agreement with our homology modeling predictions and molecular dynamics simulations of dimers and higher oligomers of TRIM5α, providing a mechanistic explanation of the reduced antiviral activity of the G249D polymorphism.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0212888</identifier><identifier>PMID: 30889178</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antiviral activity ; Antiviral drugs ; Aspartic acid ; Assemblies ; Biology and Life Sciences ; Capsid protein ; Capsid Proteins - immunology ; Capsid Proteins - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - immunology ; Carrier Proteins - metabolism ; Cats ; Circular dichroism ; Computer simulation ; Dichroism ; Dimers ; Dynamic structural analysis ; Energy transfer ; Fluorescence ; Fluorescence resonance energy transfer ; Genetic Predisposition to Disease ; Glycine ; HEK293 Cells ; HIV ; HIV Infections - genetics ; HIV Infections - immunology ; HIV Infections - virology ; HIV-1 - immunology ; HIV-1 - metabolism ; Homology ; Human immunodeficiency virus ; Human Immunodeficiency Virus Proteins - immunology ; Human Immunodeficiency Virus Proteins - metabolism ; Humans ; Immunology ; Infections ; Interferon ; Leukemia ; Medicine ; Medicine and Health Sciences ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular physics ; Molecular structure ; Oligomers ; Physical Sciences ; Physics ; Physiology ; Polymorphism ; Polymorphism, Single Nucleotide ; Protein Conformation, alpha-Helical - genetics ; Protein Domains - genetics ; Protein structure ; Protein Structure, Quaternary - genetics ; Proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - immunology ; Recombinant Proteins - metabolism ; Research and Analysis Methods ; Secondary structure ; Single-nucleotide polymorphism ; Studies ; Viral infections ; Virology</subject><ispartof>PloS one, 2019-03, Vol.14 (3), p.e0212888-e0212888</ispartof><rights>2019 Kömürlü et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Kömürlü et al 2019 Kömürlü et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c475t-8194adb385d2d465853e5aad96dc4d605aef719ba35246403d7764256c27f7763</cites><orcidid>0000-0001-5665-9195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424450/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424450/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30889178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Menéndez-Arias, Luis</contributor><creatorcontrib>Kömürlü, Sevnur</creatorcontrib><creatorcontrib>Bradley, Margret</creatorcontrib><creatorcontrib>Smolin, Nikolai</creatorcontrib><creatorcontrib>Imam, Sabrina</creatorcontrib><creatorcontrib>Pauszek, 3rd, Raymond F</creatorcontrib><creatorcontrib>Robia, Seth L</creatorcontrib><creatorcontrib>Millar, David</creatorcontrib><creatorcontrib>Nakayama, Emi E</creatorcontrib><creatorcontrib>Shioda, Tatsuo</creatorcontrib><creatorcontrib>Campbell, Edward M</creatorcontrib><title>Defects in assembly explain reduced antiviral activity of the G249D polymorphism in human TRIM5α</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is evidenced by a single nucleotide polymorphism in huTRIM5α which substitutes aspartic acid to glycine at position 249 (G249D) in the L2 region and is associated with higher susceptibility to HIV-1 infection. To understand the mechanistic basis for the reduced antiviral activity, we employed biophysical and cell biological methods coupled with molecular dynamics simulations to compare WT and the G249D polymorphism of huTRIM5α. We investigated the differences in conformational dynamics of rhesus and huTRIM5α Coiled Coil-Linker 2 (CC-L2) dimers utilizing circular dichroism and single molecule-Fluorescence Energy Transfer (sm-FRET). These methods revealed that the G249D dimer exhibits secondary structure and conformational dynamics similar to WT huTRIM5α. Homology modelling revealed that G249 was present on the hairpin of the antiparallel dimer, in a position which may act to stabilize the adjacent BBox2 domain which mediates the inter-dimeric contacts required for the formation of TRIM5 assemblies. We therefore asked if the G249D mutant forms assemblies in cells with the same efficiency as WT protein by expressing these proteins as YFP fusions and quantifying the number of assemblies in cells. In cells expressing comparable amounts of protein, the G249D mutant formed fewer assemblies than WT protein, in agreement with our homology modeling predictions and molecular dynamics simulations of dimers and higher oligomers of TRIM5α, providing a mechanistic explanation of the reduced antiviral activity of the G249D polymorphism.</description><subject>Animals</subject><subject>Antiviral activity</subject><subject>Antiviral drugs</subject><subject>Aspartic acid</subject><subject>Assemblies</subject><subject>Biology and Life Sciences</subject><subject>Capsid protein</subject><subject>Capsid Proteins - immunology</subject><subject>Capsid Proteins - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - immunology</subject><subject>Carrier Proteins - metabolism</subject><subject>Cats</subject><subject>Circular dichroism</subject><subject>Computer simulation</subject><subject>Dichroism</subject><subject>Dimers</subject><subject>Dynamic structural analysis</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Genetic Predisposition to Disease</subject><subject>Glycine</subject><subject>HEK293 Cells</subject><subject>HIV</subject><subject>HIV Infections - genetics</subject><subject>HIV Infections - immunology</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - immunology</subject><subject>HIV-1 - metabolism</subject><subject>Homology</subject><subject>Human immunodeficiency virus</subject><subject>Human Immunodeficiency Virus Proteins - immunology</subject><subject>Human Immunodeficiency Virus Proteins - metabolism</subject><subject>Humans</subject><subject>Immunology</subject><subject>Infections</subject><subject>Interferon</subject><subject>Leukemia</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular physics</subject><subject>Molecular structure</subject><subject>Oligomers</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiology</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Protein Conformation, alpha-Helical - genetics</subject><subject>Protein Domains - genetics</subject><subject>Protein structure</subject><subject>Protein Structure, Quaternary - genetics</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - immunology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Secondary structure</subject><subject>Single-nucleotide polymorphism</subject><subject>Studies</subject><subject>Viral infections</subject><subject>Virology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1qFDEUxwdRbK2-gWjAG292zXcyN4K02i5UBKnX4WyS6c6SmYzJTHEfyxfxmcx2p6UVr3I4-Z_f-eBfVa8JXhKmyIdtnFIPYTnE3i8xJVRr_aQ6JjWjC0kxe_ogPqpe5LzFWDAt5fPqiGGta6L0cQVnvvF2zKjtEeTsu3XYIf9rCFASybvJeoegH9ubNkFAYPfRuEOxQePGo3PK6zM0xLDrYho2be72oM3UQY-uvq--ij-_X1bPGgjZv5rfk-rHl89XpxeLy2_nq9NPlwvLlRgXmtQc3Jpp4ajjUmjBvABwtXSWO4kF-EaReg1MUC45Zk4pyamQlqqmhOykenvgDiFmM18nG1q4siZUsaJYHRQuwtYMqe0g7UyE1twmYro2kMbWBm_sWvnG8loRSrjADjQHrTBmzHPmXFNYH-du07rzzvp-LPd5BH3807cbcx1vTJmZF2IBvJ8BKf6cfB5N12brQ4Dex-kwt9CcUlGk7_6R_n87flDZFHNOvrkfhmCzd8xdldk7xsyOKWVvHi5yX3RnEfYXd4S-2Q</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Kömürlü, Sevnur</creator><creator>Bradley, Margret</creator><creator>Smolin, Nikolai</creator><creator>Imam, Sabrina</creator><creator>Pauszek, 3rd, Raymond F</creator><creator>Robia, Seth L</creator><creator>Millar, David</creator><creator>Nakayama, Emi E</creator><creator>Shioda, Tatsuo</creator><creator>Campbell, Edward M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5665-9195</orcidid></search><sort><creationdate>20190319</creationdate><title>Defects in assembly explain reduced antiviral activity of the G249D polymorphism in human TRIM5α</title><author>Kömürlü, Sevnur ; Bradley, Margret ; Smolin, Nikolai ; Imam, Sabrina ; Pauszek, 3rd, Raymond F ; Robia, Seth L ; Millar, David ; Nakayama, Emi E ; Shioda, Tatsuo ; Campbell, Edward M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8194adb385d2d465853e5aad96dc4d605aef719ba35246403d7764256c27f7763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antiviral activity</topic><topic>Antiviral drugs</topic><topic>Aspartic acid</topic><topic>Assemblies</topic><topic>Biology and Life Sciences</topic><topic>Capsid protein</topic><topic>Capsid Proteins - immunology</topic><topic>Capsid Proteins - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - immunology</topic><topic>Carrier Proteins - metabolism</topic><topic>Cats</topic><topic>Circular dichroism</topic><topic>Computer simulation</topic><topic>Dichroism</topic><topic>Dimers</topic><topic>Dynamic structural analysis</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Genetic Predisposition to Disease</topic><topic>Glycine</topic><topic>HEK293 Cells</topic><topic>HIV</topic><topic>HIV Infections - genetics</topic><topic>HIV Infections - immunology</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - immunology</topic><topic>HIV-1 - metabolism</topic><topic>Homology</topic><topic>Human immunodeficiency virus</topic><topic>Human Immunodeficiency Virus Proteins - immunology</topic><topic>Human Immunodeficiency Virus Proteins - metabolism</topic><topic>Humans</topic><topic>Immunology</topic><topic>Infections</topic><topic>Interferon</topic><topic>Leukemia</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular physics</topic><topic>Molecular structure</topic><topic>Oligomers</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiology</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Protein Conformation, alpha-Helical - genetics</topic><topic>Protein Domains - genetics</topic><topic>Protein structure</topic><topic>Protein Structure, Quaternary - genetics</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - immunology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Secondary structure</topic><topic>Single-nucleotide polymorphism</topic><topic>Studies</topic><topic>Viral infections</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kömürlü, Sevnur</creatorcontrib><creatorcontrib>Bradley, Margret</creatorcontrib><creatorcontrib>Smolin, Nikolai</creatorcontrib><creatorcontrib>Imam, Sabrina</creatorcontrib><creatorcontrib>Pauszek, 3rd, Raymond F</creatorcontrib><creatorcontrib>Robia, Seth L</creatorcontrib><creatorcontrib>Millar, David</creatorcontrib><creatorcontrib>Nakayama, Emi E</creatorcontrib><creatorcontrib>Shioda, Tatsuo</creatorcontrib><creatorcontrib>Campbell, Edward M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kömürlü, Sevnur</au><au>Bradley, Margret</au><au>Smolin, Nikolai</au><au>Imam, Sabrina</au><au>Pauszek, 3rd, Raymond F</au><au>Robia, Seth L</au><au>Millar, David</au><au>Nakayama, Emi E</au><au>Shioda, Tatsuo</au><au>Campbell, Edward M</au><au>Menéndez-Arias, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects in assembly explain reduced antiviral activity of the G249D polymorphism in human TRIM5α</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-03-19</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>e0212888</spage><epage>e0212888</epage><pages>e0212888-e0212888</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is evidenced by a single nucleotide polymorphism in huTRIM5α which substitutes aspartic acid to glycine at position 249 (G249D) in the L2 region and is associated with higher susceptibility to HIV-1 infection. To understand the mechanistic basis for the reduced antiviral activity, we employed biophysical and cell biological methods coupled with molecular dynamics simulations to compare WT and the G249D polymorphism of huTRIM5α. We investigated the differences in conformational dynamics of rhesus and huTRIM5α Coiled Coil-Linker 2 (CC-L2) dimers utilizing circular dichroism and single molecule-Fluorescence Energy Transfer (sm-FRET). These methods revealed that the G249D dimer exhibits secondary structure and conformational dynamics similar to WT huTRIM5α. Homology modelling revealed that G249 was present on the hairpin of the antiparallel dimer, in a position which may act to stabilize the adjacent BBox2 domain which mediates the inter-dimeric contacts required for the formation of TRIM5 assemblies. We therefore asked if the G249D mutant forms assemblies in cells with the same efficiency as WT protein by expressing these proteins as YFP fusions and quantifying the number of assemblies in cells. In cells expressing comparable amounts of protein, the G249D mutant formed fewer assemblies than WT protein, in agreement with our homology modeling predictions and molecular dynamics simulations of dimers and higher oligomers of TRIM5α, providing a mechanistic explanation of the reduced antiviral activity of the G249D polymorphism.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30889178</pmid><doi>10.1371/journal.pone.0212888</doi><orcidid>https://orcid.org/0000-0001-5665-9195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-03, Vol.14 (3), p.e0212888-e0212888
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2194691273
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antiviral activity
Antiviral drugs
Aspartic acid
Assemblies
Biology and Life Sciences
Capsid protein
Capsid Proteins - immunology
Capsid Proteins - metabolism
Carrier Proteins - genetics
Carrier Proteins - immunology
Carrier Proteins - metabolism
Cats
Circular dichroism
Computer simulation
Dichroism
Dimers
Dynamic structural analysis
Energy transfer
Fluorescence
Fluorescence resonance energy transfer
Genetic Predisposition to Disease
Glycine
HEK293 Cells
HIV
HIV Infections - genetics
HIV Infections - immunology
HIV Infections - virology
HIV-1 - immunology
HIV-1 - metabolism
Homology
Human immunodeficiency virus
Human Immunodeficiency Virus Proteins - immunology
Human Immunodeficiency Virus Proteins - metabolism
Humans
Immunology
Infections
Interferon
Leukemia
Medicine
Medicine and Health Sciences
Molecular dynamics
Molecular Dynamics Simulation
Molecular physics
Molecular structure
Oligomers
Physical Sciences
Physics
Physiology
Polymorphism
Polymorphism, Single Nucleotide
Protein Conformation, alpha-Helical - genetics
Protein Domains - genetics
Protein structure
Protein Structure, Quaternary - genetics
Proteins
Recombinant Proteins - genetics
Recombinant Proteins - immunology
Recombinant Proteins - metabolism
Research and Analysis Methods
Secondary structure
Single-nucleotide polymorphism
Studies
Viral infections
Virology
title Defects in assembly explain reduced antiviral activity of the G249D polymorphism in human TRIM5α
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20in%20assembly%20explain%20reduced%20antiviral%20activity%20of%20the%20G249D%20polymorphism%20in%20human%20TRIM5%CE%B1&rft.jtitle=PloS%20one&rft.au=K%C3%B6m%C3%BCrl%C3%BC,%20Sevnur&rft.date=2019-03-19&rft.volume=14&rft.issue=3&rft.spage=e0212888&rft.epage=e0212888&rft.pages=e0212888-e0212888&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0212888&rft_dat=%3Cproquest_plos_%3E2194691273%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194691273&rft_id=info:pmid/30889178&rft_doaj_id=oai_doaj_org_article_cb7efc497121450da84a870033e43ddf&rfr_iscdi=true