Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes

In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-03, Vol.14 (3), p.e0213245
Hauptverfasser: Tollenaar, Nikolaj, van der Heijden, Peter G M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e0213245
container_title PloS one
container_volume 14
creator Tollenaar, Nikolaj
van der Heijden, Peter G M
description In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two important tree ensemble methods, namely gradient boosting and random forests were not extensively evaluated. In this paper, we further explore the modeling potential of these techniques in the binary outcome criminal prediction context. Additionally, we explore the predictive potential of classical statistical and machine learning methods for censored time-to-event data. A range of statistical manually specified statistical and (semi-)automatic machine learning models is fitted on Dutch recidivism data, both for the binary outcome case and censored outcome case. To enhance generalizability of results, the same models are applied to two historical American data sets, the North Carolina prison data. For all datasets, (semi-) automatic modeling in the binary case seems to provide no improvement over an appropriately manually specified traditional statistical model. There is however evidence of slightly improved performance of gradient boosting in survival data. Results on the reconviction data from two sources suggest that both statistical and machine learning should be tried out for obtaining an optimal model. Even if a flexible black-box model does not improve upon the predictions of a manually specified model, it can serve as a test whether important interactions are missing or other misspecification of the model are present and can thus provide more security in the modeling process.
doi_str_mv 10.1371/journal.pone.0213245
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2189145932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577623309</galeid><doaj_id>oai_doaj_org_article_6570d4deb480444891f3590634481b13</doaj_id><sourcerecordid>A577623309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a72cb471b4e1c29a43f505e865dc962533092d075ae2e777d05dd877287e75083</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjGk-mvZGWBY_BhYG_LoNaXLaydI2NUlH119vutNdprIX0ouG9Hnfk_M2J0meZ2idEZ69u7Kj62W7HmwPa4Qzgil7kJxmJcGrHCPy8Gh9kjzx_gohRoo8f5ycEFTQEpX0NLneDsF05o_pm3RwoI0KZg_pAK62rpO9gtTWqXKRicVSB8posze-SzurofXp6Cepg8b44GQwtk-1DDL9ZcIuraLIXaey16kf3d7so4Udg7Id-KfJo1q2Hp7N77Pk-8cP3y4-ry63nzYX55crlZc4rCTHqqI8qyhkCpeSkpohBkXOtCpzzAhBJdaIMwkYOOcaMa0LznHBgTNUkLPk5cF3aK0Xc2pe4KwoM8piQpHYHAht5ZUYYq_x0MJKI242rGuEdMGoFkTOONJUQ0ULRCmNFjVhJcpJXGdVRqLX-7naWHWgFfQxlXZhuvzSm51o7F7kFHFe8GjwZjZw9ucIPojOeAVtK3uw4-HcLBa7QV_9g97f3Uw1MjZg-trGumoyFeeM8xxPCUZqfQ8VHw2dUfGK1SbuLwRvF4LIBPgdGjl6LzZfv_w_u_2xZF8fsTuQbdh5247TzfJLkB5A5az3Duq7kDMkpgm5TUNMEyLmCYmyF8c_6E50OxLkL4eTDAY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189145932</pqid></control><display><type>article</type><title>Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tollenaar, Nikolaj ; van der Heijden, Peter G M</creator><contributor>Stiglic, Gregor</contributor><creatorcontrib>Tollenaar, Nikolaj ; van der Heijden, Peter G M ; Stiglic, Gregor</creatorcontrib><description>In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two important tree ensemble methods, namely gradient boosting and random forests were not extensively evaluated. In this paper, we further explore the modeling potential of these techniques in the binary outcome criminal prediction context. Additionally, we explore the predictive potential of classical statistical and machine learning methods for censored time-to-event data. A range of statistical manually specified statistical and (semi-)automatic machine learning models is fitted on Dutch recidivism data, both for the binary outcome case and censored outcome case. To enhance generalizability of results, the same models are applied to two historical American data sets, the North Carolina prison data. For all datasets, (semi-) automatic modeling in the binary case seems to provide no improvement over an appropriately manually specified traditional statistical model. There is however evidence of slightly improved performance of gradient boosting in survival data. Results on the reconviction data from two sources suggest that both statistical and machine learning should be tried out for obtaining an optimal model. Even if a flexible black-box model does not improve upon the predictions of a manually specified model, it can serve as a test whether important interactions are missing or other misspecification of the model are present and can thus provide more security in the modeling process.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0213245</identifier><identifier>PMID: 30849094</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Area Under Curve ; Artificial intelligence ; Bioinformatics ; Biology and Life Sciences ; Biometrics ; Censorship ; Classification ; Computer and Information Sciences ; Crime ; Data mining ; Databases, Factual ; Forests ; Gene expression ; Humans ; International conferences ; Knowledge discovery ; Learning algorithms ; Logistic Models ; Machine Learning ; Mathematical models ; Modelling ; Models, Statistical ; Netherlands ; Optimization ; Performance prediction ; Physical Sciences ; Prediction models ; Prisons ; Probability ; Recidivism ; Recidivism - statistics &amp; numerical data ; Research and Analysis Methods ; Risk assessment ; ROC Curve ; Security ; Social Sciences ; Statistical analysis ; Statistical models ; Survival ; Survival analysis</subject><ispartof>PloS one, 2019-03, Vol.14 (3), p.e0213245</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Tollenaar, van der Heijden. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Tollenaar, van der Heijden 2019 Tollenaar, van der Heijden</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a72cb471b4e1c29a43f505e865dc962533092d075ae2e777d05dd877287e75083</citedby><cites>FETCH-LOGICAL-c692t-a72cb471b4e1c29a43f505e865dc962533092d075ae2e777d05dd877287e75083</cites><orcidid>0000-0002-4117-8353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407787/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407787/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30849094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stiglic, Gregor</contributor><creatorcontrib>Tollenaar, Nikolaj</creatorcontrib><creatorcontrib>van der Heijden, Peter G M</creatorcontrib><title>Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two important tree ensemble methods, namely gradient boosting and random forests were not extensively evaluated. In this paper, we further explore the modeling potential of these techniques in the binary outcome criminal prediction context. Additionally, we explore the predictive potential of classical statistical and machine learning methods for censored time-to-event data. A range of statistical manually specified statistical and (semi-)automatic machine learning models is fitted on Dutch recidivism data, both for the binary outcome case and censored outcome case. To enhance generalizability of results, the same models are applied to two historical American data sets, the North Carolina prison data. For all datasets, (semi-) automatic modeling in the binary case seems to provide no improvement over an appropriately manually specified traditional statistical model. There is however evidence of slightly improved performance of gradient boosting in survival data. Results on the reconviction data from two sources suggest that both statistical and machine learning should be tried out for obtaining an optimal model. Even if a flexible black-box model does not improve upon the predictions of a manually specified model, it can serve as a test whether important interactions are missing or other misspecification of the model are present and can thus provide more security in the modeling process.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biometrics</subject><subject>Censorship</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Crime</subject><subject>Data mining</subject><subject>Databases, Factual</subject><subject>Forests</subject><subject>Gene expression</subject><subject>Humans</subject><subject>International conferences</subject><subject>Knowledge discovery</subject><subject>Learning algorithms</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Statistical</subject><subject>Netherlands</subject><subject>Optimization</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Prisons</subject><subject>Probability</subject><subject>Recidivism</subject><subject>Recidivism - statistics &amp; numerical data</subject><subject>Research and Analysis Methods</subject><subject>Risk assessment</subject><subject>ROC Curve</subject><subject>Security</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjGk-mvZGWBY_BhYG_LoNaXLaydI2NUlH119vutNdprIX0ouG9Hnfk_M2J0meZ2idEZ69u7Kj62W7HmwPa4Qzgil7kJxmJcGrHCPy8Gh9kjzx_gohRoo8f5ycEFTQEpX0NLneDsF05o_pm3RwoI0KZg_pAK62rpO9gtTWqXKRicVSB8posze-SzurofXp6Cepg8b44GQwtk-1DDL9ZcIuraLIXaey16kf3d7so4Udg7Id-KfJo1q2Hp7N77Pk-8cP3y4-ry63nzYX55crlZc4rCTHqqI8qyhkCpeSkpohBkXOtCpzzAhBJdaIMwkYOOcaMa0LznHBgTNUkLPk5cF3aK0Xc2pe4KwoM8piQpHYHAht5ZUYYq_x0MJKI242rGuEdMGoFkTOONJUQ0ULRCmNFjVhJcpJXGdVRqLX-7naWHWgFfQxlXZhuvzSm51o7F7kFHFe8GjwZjZw9ucIPojOeAVtK3uw4-HcLBa7QV_9g97f3Uw1MjZg-trGumoyFeeM8xxPCUZqfQ8VHw2dUfGK1SbuLwRvF4LIBPgdGjl6LzZfv_w_u_2xZF8fsTuQbdh5247TzfJLkB5A5az3Duq7kDMkpgm5TUNMEyLmCYmyF8c_6E50OxLkL4eTDAY</recordid><startdate>20190308</startdate><enddate>20190308</enddate><creator>Tollenaar, Nikolaj</creator><creator>van der Heijden, Peter G M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4117-8353</orcidid></search><sort><creationdate>20190308</creationdate><title>Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes</title><author>Tollenaar, Nikolaj ; van der Heijden, Peter G M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a72cb471b4e1c29a43f505e865dc962533092d075ae2e777d05dd877287e75083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biometrics</topic><topic>Censorship</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Crime</topic><topic>Data mining</topic><topic>Databases, Factual</topic><topic>Forests</topic><topic>Gene expression</topic><topic>Humans</topic><topic>International conferences</topic><topic>Knowledge discovery</topic><topic>Learning algorithms</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Statistical</topic><topic>Netherlands</topic><topic>Optimization</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Prisons</topic><topic>Probability</topic><topic>Recidivism</topic><topic>Recidivism - statistics &amp; numerical data</topic><topic>Research and Analysis Methods</topic><topic>Risk assessment</topic><topic>ROC Curve</topic><topic>Security</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tollenaar, Nikolaj</creatorcontrib><creatorcontrib>van der Heijden, Peter G M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tollenaar, Nikolaj</au><au>van der Heijden, Peter G M</au><au>Stiglic, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-03-08</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>e0213245</spage><pages>e0213245-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two important tree ensemble methods, namely gradient boosting and random forests were not extensively evaluated. In this paper, we further explore the modeling potential of these techniques in the binary outcome criminal prediction context. Additionally, we explore the predictive potential of classical statistical and machine learning methods for censored time-to-event data. A range of statistical manually specified statistical and (semi-)automatic machine learning models is fitted on Dutch recidivism data, both for the binary outcome case and censored outcome case. To enhance generalizability of results, the same models are applied to two historical American data sets, the North Carolina prison data. For all datasets, (semi-) automatic modeling in the binary case seems to provide no improvement over an appropriately manually specified traditional statistical model. There is however evidence of slightly improved performance of gradient boosting in survival data. Results on the reconviction data from two sources suggest that both statistical and machine learning should be tried out for obtaining an optimal model. Even if a flexible black-box model does not improve upon the predictions of a manually specified model, it can serve as a test whether important interactions are missing or other misspecification of the model are present and can thus provide more security in the modeling process.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30849094</pmid><doi>10.1371/journal.pone.0213245</doi><tpages>e0213245</tpages><orcidid>https://orcid.org/0000-0002-4117-8353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-03, Vol.14 (3), p.e0213245
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2189145932
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Area Under Curve
Artificial intelligence
Bioinformatics
Biology and Life Sciences
Biometrics
Censorship
Classification
Computer and Information Sciences
Crime
Data mining
Databases, Factual
Forests
Gene expression
Humans
International conferences
Knowledge discovery
Learning algorithms
Logistic Models
Machine Learning
Mathematical models
Modelling
Models, Statistical
Netherlands
Optimization
Performance prediction
Physical Sciences
Prediction models
Prisons
Probability
Recidivism
Recidivism - statistics & numerical data
Research and Analysis Methods
Risk assessment
ROC Curve
Security
Social Sciences
Statistical analysis
Statistical models
Survival
Survival analysis
title Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20predictive%20performance%20of%20criminal%20recidivism%20models%20using%20registration%20data%20with%20binary%20and%20survival%20outcomes&rft.jtitle=PloS%20one&rft.au=Tollenaar,%20Nikolaj&rft.date=2019-03-08&rft.volume=14&rft.issue=3&rft.spage=e0213245&rft.pages=e0213245-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0213245&rft_dat=%3Cgale_plos_%3EA577623309%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189145932&rft_id=info:pmid/30849094&rft_galeid=A577623309&rft_doaj_id=oai_doaj_org_article_6570d4deb480444891f3590634481b13&rfr_iscdi=true