Using OpenStreetMap point-of-interest data to model urban change-A feasibility study
User-generated content is a valuable resource for capturing all aspects of our environment and lives, and dedicated Volunteered Geographic Information (VGI) efforts such as OpenStreetMap (OSM) have revolutionized spatial data collection. While OSM data is widely used, considerably little attention h...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-02, Vol.14 (2), p.e0212606-e0212606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0212606 |
---|---|
container_issue | 2 |
container_start_page | e0212606 |
container_title | PloS one |
container_volume | 14 |
creator | Zhang, Liming Pfoser, Dieter |
description | User-generated content is a valuable resource for capturing all aspects of our environment and lives, and dedicated Volunteered Geographic Information (VGI) efforts such as OpenStreetMap (OSM) have revolutionized spatial data collection. While OSM data is widely used, considerably little attention has been paid to the quality of its Point-of-interest (POI) component. This work studies the accuracy, coverage, and trend worthiness of POI data. We assess the accuracy and coverage using another VGI source that utilizes editorial control. OSM data is compared to Foursquare data by using a combination of label similarity and positional proximity. Using the example of coffee shop POIs in Manhattan we also assess the trend worthiness of OSM data. A series of spatio-temporal statistical models are tested to compare change in the number of coffee shops to home prices in certain areas. This work overall shows that, although not perfect, OSM POI data and specifically its temporal aspect (changeset) can be used to drive urban science research and to study urban change. |
doi_str_mv | 10.1371/journal.pone.0212606 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2186079574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A575839746</galeid><doaj_id>oai_doaj_org_article_530cec45d2d647debcfae651e063172e</doaj_id><sourcerecordid>A575839746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9609ad6a6f2eb0cc6e43003dd5a9920adbaad229bc645b22be19155b89128b513</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLguhFx3w0aXsjDIsfAysD7q63IU1OO1k6SW1Scf69Gae7TGUvJBcnJM95T87JmyQvMVpiWuAPt24crOyWvbOwRAQTjvij5BxXlGScIPr4ZH-WPPP-FiFGS86fJmcUlYgQhs-T6xtvbJtuerBXYQAI32Sf9s7YkLkmiwEG8CHVMsg0uHTnNHTpONTSpmorbQvZKm1AelObzoR96sOo98-TJ43sPLyY4iK5-fzp-uJrdrn5sr5YXWaKVyRkFUeV1FzyhkCNlOKQU4So1kxWFUFS11JqQqpa8ZzVhNSAK8xYXVaYlDXDdJG8Pur2nfNiGogXBJccFRUr8kisj4R28lb0g9nJYS-cNOLvgRtaIYdgVAeCUaRA5UwTzfNCQ60aCZxhQJzigkDU-jhVG-sdaAU2DLKbic5vrNmK1v0SnJbxyUUUeDcJDO7nGMcqdsYr6DppwY3Hd-OcFPGbFsmbf9CHu5uoVsYGjG1crKsOomLFClbSqsh5pJYPUHFp2BkV3dOYeD5LeD9LiEyA36GVo_diffX9_9nNjzn79oTdguzC1rtuDMZZPwfzI6gG5_0Azf2QMRIH899NQxzMLybzx7RXpx90n3TndvoHsZn-9A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186079574</pqid></control><display><type>article</type><title>Using OpenStreetMap point-of-interest data to model urban change-A feasibility study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Liming ; Pfoser, Dieter</creator><contributor>Szell, Michael</contributor><creatorcontrib>Zhang, Liming ; Pfoser, Dieter ; Szell, Michael</creatorcontrib><description>User-generated content is a valuable resource for capturing all aspects of our environment and lives, and dedicated Volunteered Geographic Information (VGI) efforts such as OpenStreetMap (OSM) have revolutionized spatial data collection. While OSM data is widely used, considerably little attention has been paid to the quality of its Point-of-interest (POI) component. This work studies the accuracy, coverage, and trend worthiness of POI data. We assess the accuracy and coverage using another VGI source that utilizes editorial control. OSM data is compared to Foursquare data by using a combination of label similarity and positional proximity. Using the example of coffee shop POIs in Manhattan we also assess the trend worthiness of OSM data. A series of spatio-temporal statistical models are tested to compare change in the number of coffee shops to home prices in certain areas. This work overall shows that, although not perfect, OSM POI data and specifically its temporal aspect (changeset) can be used to drive urban science research and to study urban change.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0212606</identifier><identifier>PMID: 30802251</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Analysis ; Biology and Life Sciences ; Coffee ; Coffee (Beverage) ; Coffeehouses ; Criminal statistics ; Data collection ; Data Curation ; Digital mapping ; Earth Sciences ; Ecology and Environmental Sciences ; Feasibility studies ; Geographic Information Systems ; Geography ; Geospatial data ; Humans ; Mathematical models ; Navigation systems ; Normal distribution ; Open systems ; Physical Sciences ; Prices ; Restaurants ; Seasonal variations ; Smart cities ; Social Sciences ; Spatial data ; Statistical analysis ; Statistical models ; Trends ; Urban Renewal ; User generated content</subject><ispartof>PloS one, 2019-02, Vol.14 (2), p.e0212606-e0212606</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Zhang, Pfoser. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Zhang, Pfoser 2019 Zhang, Pfoser</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9609ad6a6f2eb0cc6e43003dd5a9920adbaad229bc645b22be19155b89128b513</citedby><cites>FETCH-LOGICAL-c692t-9609ad6a6f2eb0cc6e43003dd5a9920adbaad229bc645b22be19155b89128b513</cites><orcidid>0000-0002-8451-4206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30802251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Szell, Michael</contributor><creatorcontrib>Zhang, Liming</creatorcontrib><creatorcontrib>Pfoser, Dieter</creatorcontrib><title>Using OpenStreetMap point-of-interest data to model urban change-A feasibility study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>User-generated content is a valuable resource for capturing all aspects of our environment and lives, and dedicated Volunteered Geographic Information (VGI) efforts such as OpenStreetMap (OSM) have revolutionized spatial data collection. While OSM data is widely used, considerably little attention has been paid to the quality of its Point-of-interest (POI) component. This work studies the accuracy, coverage, and trend worthiness of POI data. We assess the accuracy and coverage using another VGI source that utilizes editorial control. OSM data is compared to Foursquare data by using a combination of label similarity and positional proximity. Using the example of coffee shop POIs in Manhattan we also assess the trend worthiness of OSM data. A series of spatio-temporal statistical models are tested to compare change in the number of coffee shops to home prices in certain areas. This work overall shows that, although not perfect, OSM POI data and specifically its temporal aspect (changeset) can be used to drive urban science research and to study urban change.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Coffee</subject><subject>Coffee (Beverage)</subject><subject>Coffeehouses</subject><subject>Criminal statistics</subject><subject>Data collection</subject><subject>Data Curation</subject><subject>Digital mapping</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Feasibility studies</subject><subject>Geographic Information Systems</subject><subject>Geography</subject><subject>Geospatial data</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Navigation systems</subject><subject>Normal distribution</subject><subject>Open systems</subject><subject>Physical Sciences</subject><subject>Prices</subject><subject>Restaurants</subject><subject>Seasonal variations</subject><subject>Smart cities</subject><subject>Social Sciences</subject><subject>Spatial data</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Trends</subject><subject>Urban Renewal</subject><subject>User generated content</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLguhFx3w0aXsjDIsfAysD7q63IU1OO1k6SW1Scf69Gae7TGUvJBcnJM95T87JmyQvMVpiWuAPt24crOyWvbOwRAQTjvij5BxXlGScIPr4ZH-WPPP-FiFGS86fJmcUlYgQhs-T6xtvbJtuerBXYQAI32Sf9s7YkLkmiwEG8CHVMsg0uHTnNHTpONTSpmorbQvZKm1AelObzoR96sOo98-TJ43sPLyY4iK5-fzp-uJrdrn5sr5YXWaKVyRkFUeV1FzyhkCNlOKQU4So1kxWFUFS11JqQqpa8ZzVhNSAK8xYXVaYlDXDdJG8Pur2nfNiGogXBJccFRUr8kisj4R28lb0g9nJYS-cNOLvgRtaIYdgVAeCUaRA5UwTzfNCQ60aCZxhQJzigkDU-jhVG-sdaAU2DLKbic5vrNmK1v0SnJbxyUUUeDcJDO7nGMcqdsYr6DppwY3Hd-OcFPGbFsmbf9CHu5uoVsYGjG1crKsOomLFClbSqsh5pJYPUHFp2BkV3dOYeD5LeD9LiEyA36GVo_diffX9_9nNjzn79oTdguzC1rtuDMZZPwfzI6gG5_0Azf2QMRIH899NQxzMLybzx7RXpx90n3TndvoHsZn-9A</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Zhang, Liming</creator><creator>Pfoser, Dieter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8451-4206</orcidid></search><sort><creationdate>20190225</creationdate><title>Using OpenStreetMap point-of-interest data to model urban change-A feasibility study</title><author>Zhang, Liming ; Pfoser, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9609ad6a6f2eb0cc6e43003dd5a9920adbaad229bc645b22be19155b89128b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Coffee</topic><topic>Coffee (Beverage)</topic><topic>Coffeehouses</topic><topic>Criminal statistics</topic><topic>Data collection</topic><topic>Data Curation</topic><topic>Digital mapping</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Feasibility studies</topic><topic>Geographic Information Systems</topic><topic>Geography</topic><topic>Geospatial data</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Navigation systems</topic><topic>Normal distribution</topic><topic>Open systems</topic><topic>Physical Sciences</topic><topic>Prices</topic><topic>Restaurants</topic><topic>Seasonal variations</topic><topic>Smart cities</topic><topic>Social Sciences</topic><topic>Spatial data</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Trends</topic><topic>Urban Renewal</topic><topic>User generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liming</creatorcontrib><creatorcontrib>Pfoser, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liming</au><au>Pfoser, Dieter</au><au>Szell, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using OpenStreetMap point-of-interest data to model urban change-A feasibility study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-02-25</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>e0212606</spage><epage>e0212606</epage><pages>e0212606-e0212606</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>User-generated content is a valuable resource for capturing all aspects of our environment and lives, and dedicated Volunteered Geographic Information (VGI) efforts such as OpenStreetMap (OSM) have revolutionized spatial data collection. While OSM data is widely used, considerably little attention has been paid to the quality of its Point-of-interest (POI) component. This work studies the accuracy, coverage, and trend worthiness of POI data. We assess the accuracy and coverage using another VGI source that utilizes editorial control. OSM data is compared to Foursquare data by using a combination of label similarity and positional proximity. Using the example of coffee shop POIs in Manhattan we also assess the trend worthiness of OSM data. A series of spatio-temporal statistical models are tested to compare change in the number of coffee shops to home prices in certain areas. This work overall shows that, although not perfect, OSM POI data and specifically its temporal aspect (changeset) can be used to drive urban science research and to study urban change.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30802251</pmid><doi>10.1371/journal.pone.0212606</doi><tpages>e0212606</tpages><orcidid>https://orcid.org/0000-0002-8451-4206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-02, Vol.14 (2), p.e0212606-e0212606 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2186079574 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Analysis Biology and Life Sciences Coffee Coffee (Beverage) Coffeehouses Criminal statistics Data collection Data Curation Digital mapping Earth Sciences Ecology and Environmental Sciences Feasibility studies Geographic Information Systems Geography Geospatial data Humans Mathematical models Navigation systems Normal distribution Open systems Physical Sciences Prices Restaurants Seasonal variations Smart cities Social Sciences Spatial data Statistical analysis Statistical models Trends Urban Renewal User generated content |
title | Using OpenStreetMap point-of-interest data to model urban change-A feasibility study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20OpenStreetMap%20point-of-interest%20data%20to%20model%20urban%20change-A%20feasibility%20study&rft.jtitle=PloS%20one&rft.au=Zhang,%20Liming&rft.date=2019-02-25&rft.volume=14&rft.issue=2&rft.spage=e0212606&rft.epage=e0212606&rft.pages=e0212606-e0212606&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0212606&rft_dat=%3Cgale_plos_%3EA575839746%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186079574&rft_id=info:pmid/30802251&rft_galeid=A575839746&rft_doaj_id=oai_doaj_org_article_530cec45d2d647debcfae651e063172e&rfr_iscdi=true |