Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico

We explored the hypothesis that high β-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of β-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-01, Vol.14 (1), p.e0210890-e0210890
Hauptverfasser: Rodríguez, Pilar, Ochoa-Ochoa, Leticia M, Munguía, Mariana, Sánchez-Cordero, Víctor, Navarro-Sigüenza, Adolfo G, Flores-Villela, Oscar A, Nakamura, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0210890
container_issue 1
container_start_page e0210890
container_title PloS one
container_volume 14
creator Rodríguez, Pilar
Ochoa-Ochoa, Leticia M
Munguía, Mariana
Sánchez-Cordero, Víctor
Navarro-Sigüenza, Adolfo G
Flores-Villela, Oscar A
Nakamura, Miguel
description We explored the hypothesis that high β-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of β-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, and birds occurring in Mexico. We estimated β-diversity for each taxon at four spatial scales (grid cells of 2°, 1°, 0.5° and 0.25°) using the multiplicative formula of Whittaker βw. For each spatial scale, we derived 10 variables of environmental heterogeneity among cells based on raw data of temperature, precipitation, elevation, vegetation and soil. We applied conditional autoregressive models (CAR) to identify the drivers of β-diversity for each taxon at each spatial scale. CARs increased in explanatory power from fine-to-coarse spatial scales in amphibians, reptiles and mammals. The heterogeneity in precipitation including both, coefficient of variation (CV) and range of values (ROV), resulted in the most important drivers of β-diversity of amphibians; the heterogeneity in temperature (CV) and elevation (ROV) were the most important drivers of β-diversity for reptiles; the heterogeneity in temperature (ROV) resulted in the most important driver in β-diversity for mammals. For birds, CARs resulted significant at fine scales (grid cells of 0.5° and 0.25°), and the precipitation (ROV and CV), temperature (ROV), and vegetation (H) and soil (H) were heterogeneity variables retained in the model. We found support for the hypothesis of environmental heterogeneity (HEH) for terrestrial vertebrates at coarse scales (grid cell of 2°). Different variables of heterogeneity, mainly abiotic, were significant for each taxon, reflecting physiological differences among terrestrial vertebrate groups. Our study revealed the importance of mountain areas in the geographic patterns of β-diversity of terrestrial vertebrates in Mexico. At a coarse scale, specific variables of heterogeneity can be used as a proxy of β-diversity for amphibians and reptiles.
doi_str_mv 10.1371/journal.pone.0210890
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2171189876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_166f8914af2a4b16860a66631fc7048a</doaj_id><sourcerecordid>2179415845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ba9ce6ed1876c66dbd9ebdb5ae845a4ac83b9cd6f72a8152cb4f75ee8ec5f0473</originalsourceid><addsrcrecordid>eNptUktuFDEUbCEQ-cANELTEJpse_Gu3e4OEogCRgtjA2np2v5545LEHu2eUXIuDcCY8mU6UIFa2nqvKr0pVVW8oWVDe0Q-ruE0B_GITAy4Io0T15Fl1THvOGskIf_7oflSd5LwipOVKypfVESdSMSLpcWUvws6lGNYYJvD1NU6Y4hIDuum2xpuNBxdybSOkjE224LH-87sZ3A5T3kPiWBdGwjwlV_hlPKFJMGGuXai_4Y2z8VX1YgSf8fV8nlY_P1_8OP_aXH3_cnn-6aqxLZNTY6C3KHGgqpNWysEMPZrBtIBKtCDAKm56O8ixY6Boy6wRY9ciKrTtSETHT6t3B92Nj1nP-WTNaEep6otqQVweEEOEld4kt4Z0qyM4fTeIaakhTc561FTKUfVUwMhAGCqVJCCl5HS0HREKitbH-betWeNgS4AJ_BPRpy_BXetl3GnJRSeYKAJns0CKv7YlQb122aL3EDBu7_buBW2L-QJ9_w_0_-7EAWVTzDnh-LAMJXrfmXuW3ndGz50ptLePjTyQ7kvC_wJ-xsOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171189876</pqid></control><display><type>article</type><title>Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico</title><source>PubMed (Medline)</source><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodríguez, Pilar ; Ochoa-Ochoa, Leticia M ; Munguía, Mariana ; Sánchez-Cordero, Víctor ; Navarro-Sigüenza, Adolfo G ; Flores-Villela, Oscar A ; Nakamura, Miguel</creator><creatorcontrib>Rodríguez, Pilar ; Ochoa-Ochoa, Leticia M ; Munguía, Mariana ; Sánchez-Cordero, Víctor ; Navarro-Sigüenza, Adolfo G ; Flores-Villela, Oscar A ; Nakamura, Miguel</creatorcontrib><description>We explored the hypothesis that high β-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of β-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, and birds occurring in Mexico. We estimated β-diversity for each taxon at four spatial scales (grid cells of 2°, 1°, 0.5° and 0.25°) using the multiplicative formula of Whittaker βw. For each spatial scale, we derived 10 variables of environmental heterogeneity among cells based on raw data of temperature, precipitation, elevation, vegetation and soil. We applied conditional autoregressive models (CAR) to identify the drivers of β-diversity for each taxon at each spatial scale. CARs increased in explanatory power from fine-to-coarse spatial scales in amphibians, reptiles and mammals. The heterogeneity in precipitation including both, coefficient of variation (CV) and range of values (ROV), resulted in the most important drivers of β-diversity of amphibians; the heterogeneity in temperature (CV) and elevation (ROV) were the most important drivers of β-diversity for reptiles; the heterogeneity in temperature (ROV) resulted in the most important driver in β-diversity for mammals. For birds, CARs resulted significant at fine scales (grid cells of 0.5° and 0.25°), and the precipitation (ROV and CV), temperature (ROV), and vegetation (H) and soil (H) were heterogeneity variables retained in the model. We found support for the hypothesis of environmental heterogeneity (HEH) for terrestrial vertebrates at coarse scales (grid cell of 2°). Different variables of heterogeneity, mainly abiotic, were significant for each taxon, reflecting physiological differences among terrestrial vertebrate groups. Our study revealed the importance of mountain areas in the geographic patterns of β-diversity of terrestrial vertebrates in Mexico. At a coarse scale, specific variables of heterogeneity can be used as a proxy of β-diversity for amphibians and reptiles.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0210890</identifier><identifier>PMID: 30682061</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Altitude ; Amphibia ; Amphibians ; Animals ; Autoregressive models ; Biodiversity ; Biology and Life Sciences ; Birds ; Climate ; Climate change ; Coefficient of variation ; Data analysis ; Earth Sciences ; Ecology and Environmental Sciences ; Ecosystem ; Elevation ; Geography ; Heterogeneity ; Hypotheses ; Mammals ; Mexico ; Models, Biological ; Mountain regions ; Museums ; People and places ; Precipitation ; Reptiles ; Soil conditions ; Soil temperature ; Spatial data ; Spatial distribution ; Taxa ; Temperature ; Temperature effects ; Terrestrial environments ; Vegetation ; Vertebrates</subject><ispartof>PloS one, 2019-01, Vol.14 (1), p.e0210890-e0210890</ispartof><rights>2019 Rodríguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Rodríguez et al 2019 Rodríguez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ba9ce6ed1876c66dbd9ebdb5ae845a4ac83b9cd6f72a8152cb4f75ee8ec5f0473</citedby><cites>FETCH-LOGICAL-c526t-ba9ce6ed1876c66dbd9ebdb5ae845a4ac83b9cd6f72a8152cb4f75ee8ec5f0473</cites><orcidid>0000-0002-9846-4596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347424/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347424/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30682061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez, Pilar</creatorcontrib><creatorcontrib>Ochoa-Ochoa, Leticia M</creatorcontrib><creatorcontrib>Munguía, Mariana</creatorcontrib><creatorcontrib>Sánchez-Cordero, Víctor</creatorcontrib><creatorcontrib>Navarro-Sigüenza, Adolfo G</creatorcontrib><creatorcontrib>Flores-Villela, Oscar A</creatorcontrib><creatorcontrib>Nakamura, Miguel</creatorcontrib><title>Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We explored the hypothesis that high β-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of β-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, and birds occurring in Mexico. We estimated β-diversity for each taxon at four spatial scales (grid cells of 2°, 1°, 0.5° and 0.25°) using the multiplicative formula of Whittaker βw. For each spatial scale, we derived 10 variables of environmental heterogeneity among cells based on raw data of temperature, precipitation, elevation, vegetation and soil. We applied conditional autoregressive models (CAR) to identify the drivers of β-diversity for each taxon at each spatial scale. CARs increased in explanatory power from fine-to-coarse spatial scales in amphibians, reptiles and mammals. The heterogeneity in precipitation including both, coefficient of variation (CV) and range of values (ROV), resulted in the most important drivers of β-diversity of amphibians; the heterogeneity in temperature (CV) and elevation (ROV) were the most important drivers of β-diversity for reptiles; the heterogeneity in temperature (ROV) resulted in the most important driver in β-diversity for mammals. For birds, CARs resulted significant at fine scales (grid cells of 0.5° and 0.25°), and the precipitation (ROV and CV), temperature (ROV), and vegetation (H) and soil (H) were heterogeneity variables retained in the model. We found support for the hypothesis of environmental heterogeneity (HEH) for terrestrial vertebrates at coarse scales (grid cell of 2°). Different variables of heterogeneity, mainly abiotic, were significant for each taxon, reflecting physiological differences among terrestrial vertebrate groups. Our study revealed the importance of mountain areas in the geographic patterns of β-diversity of terrestrial vertebrates in Mexico. At a coarse scale, specific variables of heterogeneity can be used as a proxy of β-diversity for amphibians and reptiles.</description><subject>Altitude</subject><subject>Amphibia</subject><subject>Amphibians</subject><subject>Animals</subject><subject>Autoregressive models</subject><subject>Biodiversity</subject><subject>Biology and Life Sciences</subject><subject>Birds</subject><subject>Climate</subject><subject>Climate change</subject><subject>Coefficient of variation</subject><subject>Data analysis</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Elevation</subject><subject>Geography</subject><subject>Heterogeneity</subject><subject>Hypotheses</subject><subject>Mammals</subject><subject>Mexico</subject><subject>Models, Biological</subject><subject>Mountain regions</subject><subject>Museums</subject><subject>People and places</subject><subject>Precipitation</subject><subject>Reptiles</subject><subject>Soil conditions</subject><subject>Soil temperature</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Taxa</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Terrestrial environments</subject><subject>Vegetation</subject><subject>Vertebrates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUktuFDEUbCEQ-cANELTEJpse_Gu3e4OEogCRgtjA2np2v5545LEHu2eUXIuDcCY8mU6UIFa2nqvKr0pVVW8oWVDe0Q-ruE0B_GITAy4Io0T15Fl1THvOGskIf_7oflSd5LwipOVKypfVESdSMSLpcWUvws6lGNYYJvD1NU6Y4hIDuum2xpuNBxdybSOkjE224LH-87sZ3A5T3kPiWBdGwjwlV_hlPKFJMGGuXai_4Y2z8VX1YgSf8fV8nlY_P1_8OP_aXH3_cnn-6aqxLZNTY6C3KHGgqpNWysEMPZrBtIBKtCDAKm56O8ixY6Boy6wRY9ciKrTtSETHT6t3B92Nj1nP-WTNaEep6otqQVweEEOEld4kt4Z0qyM4fTeIaakhTc561FTKUfVUwMhAGCqVJCCl5HS0HREKitbH-betWeNgS4AJ_BPRpy_BXetl3GnJRSeYKAJns0CKv7YlQb122aL3EDBu7_buBW2L-QJ9_w_0_-7EAWVTzDnh-LAMJXrfmXuW3ndGz50ptLePjTyQ7kvC_wJ-xsOQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Rodríguez, Pilar</creator><creator>Ochoa-Ochoa, Leticia M</creator><creator>Munguía, Mariana</creator><creator>Sánchez-Cordero, Víctor</creator><creator>Navarro-Sigüenza, Adolfo G</creator><creator>Flores-Villela, Oscar A</creator><creator>Nakamura, Miguel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9846-4596</orcidid></search><sort><creationdate>20190101</creationdate><title>Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico</title><author>Rodríguez, Pilar ; Ochoa-Ochoa, Leticia M ; Munguía, Mariana ; Sánchez-Cordero, Víctor ; Navarro-Sigüenza, Adolfo G ; Flores-Villela, Oscar A ; Nakamura, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ba9ce6ed1876c66dbd9ebdb5ae845a4ac83b9cd6f72a8152cb4f75ee8ec5f0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Altitude</topic><topic>Amphibia</topic><topic>Amphibians</topic><topic>Animals</topic><topic>Autoregressive models</topic><topic>Biodiversity</topic><topic>Biology and Life Sciences</topic><topic>Birds</topic><topic>Climate</topic><topic>Climate change</topic><topic>Coefficient of variation</topic><topic>Data analysis</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Elevation</topic><topic>Geography</topic><topic>Heterogeneity</topic><topic>Hypotheses</topic><topic>Mammals</topic><topic>Mexico</topic><topic>Models, Biological</topic><topic>Mountain regions</topic><topic>Museums</topic><topic>People and places</topic><topic>Precipitation</topic><topic>Reptiles</topic><topic>Soil conditions</topic><topic>Soil temperature</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Taxa</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Terrestrial environments</topic><topic>Vegetation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Pilar</creatorcontrib><creatorcontrib>Ochoa-Ochoa, Leticia M</creatorcontrib><creatorcontrib>Munguía, Mariana</creatorcontrib><creatorcontrib>Sánchez-Cordero, Víctor</creatorcontrib><creatorcontrib>Navarro-Sigüenza, Adolfo G</creatorcontrib><creatorcontrib>Flores-Villela, Oscar A</creatorcontrib><creatorcontrib>Nakamura, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Pilar</au><au>Ochoa-Ochoa, Leticia M</au><au>Munguía, Mariana</au><au>Sánchez-Cordero, Víctor</au><au>Navarro-Sigüenza, Adolfo G</au><au>Flores-Villela, Oscar A</au><au>Nakamura, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>e0210890</spage><epage>e0210890</epage><pages>e0210890-e0210890</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We explored the hypothesis that high β-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of β-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, and birds occurring in Mexico. We estimated β-diversity for each taxon at four spatial scales (grid cells of 2°, 1°, 0.5° and 0.25°) using the multiplicative formula of Whittaker βw. For each spatial scale, we derived 10 variables of environmental heterogeneity among cells based on raw data of temperature, precipitation, elevation, vegetation and soil. We applied conditional autoregressive models (CAR) to identify the drivers of β-diversity for each taxon at each spatial scale. CARs increased in explanatory power from fine-to-coarse spatial scales in amphibians, reptiles and mammals. The heterogeneity in precipitation including both, coefficient of variation (CV) and range of values (ROV), resulted in the most important drivers of β-diversity of amphibians; the heterogeneity in temperature (CV) and elevation (ROV) were the most important drivers of β-diversity for reptiles; the heterogeneity in temperature (ROV) resulted in the most important driver in β-diversity for mammals. For birds, CARs resulted significant at fine scales (grid cells of 0.5° and 0.25°), and the precipitation (ROV and CV), temperature (ROV), and vegetation (H) and soil (H) were heterogeneity variables retained in the model. We found support for the hypothesis of environmental heterogeneity (HEH) for terrestrial vertebrates at coarse scales (grid cell of 2°). Different variables of heterogeneity, mainly abiotic, were significant for each taxon, reflecting physiological differences among terrestrial vertebrate groups. Our study revealed the importance of mountain areas in the geographic patterns of β-diversity of terrestrial vertebrates in Mexico. At a coarse scale, specific variables of heterogeneity can be used as a proxy of β-diversity for amphibians and reptiles.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30682061</pmid><doi>10.1371/journal.pone.0210890</doi><orcidid>https://orcid.org/0000-0002-9846-4596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-01, Vol.14 (1), p.e0210890-e0210890
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2171189876
source PubMed (Medline); PLoS; MEDLINE; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry
subjects Altitude
Amphibia
Amphibians
Animals
Autoregressive models
Biodiversity
Biology and Life Sciences
Birds
Climate
Climate change
Coefficient of variation
Data analysis
Earth Sciences
Ecology and Environmental Sciences
Ecosystem
Elevation
Geography
Heterogeneity
Hypotheses
Mammals
Mexico
Models, Biological
Mountain regions
Museums
People and places
Precipitation
Reptiles
Soil conditions
Soil temperature
Spatial data
Spatial distribution
Taxa
Temperature
Temperature effects
Terrestrial environments
Vegetation
Vertebrates
title Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20heterogeneity%20explains%20coarse-scale%20%CE%B2-diversity%20of%20terrestrial%20vertebrates%20in%20Mexico&rft.jtitle=PloS%20one&rft.au=Rodr%C3%ADguez,%20Pilar&rft.date=2019-01-01&rft.volume=14&rft.issue=1&rft.spage=e0210890&rft.epage=e0210890&rft.pages=e0210890-e0210890&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0210890&rft_dat=%3Cproquest_plos_%3E2179415845%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171189876&rft_id=info:pmid/30682061&rft_doaj_id=oai_doaj_org_article_166f8914af2a4b16860a66631fc7048a&rfr_iscdi=true