Transport of solid bodies along tubular membrane tethers
We study the crucial role of membrane fluctuations in maintaining a narrow gap between a fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap, hence giving rise to a finite particle mobility along the tube. While our study has relevance for how cells are able to tr...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-01, Vol.14 (1), p.e0210259-e0210259 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0210259 |
---|---|
container_issue | 1 |
container_start_page | e0210259 |
container_title | PloS one |
container_volume | 14 |
creator | Daniels, D R |
description | We study the crucial role of membrane fluctuations in maintaining a narrow gap between a fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap, hence giving rise to a finite particle mobility along the tube. While our study has relevance for how cells are able to transport large organelles or other cargo along connecting membrane tubes, known as tunneling nanotubes, our calculations are also framed so that they can be tested by a specific in vitro experiment: A tubular membrane tether can be pulled from a membrane reservoir, such as an aspirated Giant Unilamellar Vesicle (GUV), e.g. using a conjugated bead that binds to the membrane and is held in a laser trap. We compute the subsequent mobility of colloidal particles trapped in the tube, focusing on the case when the particle is large compared to the equilibrium tube radius. We predict that the particle mobility should scale as ∼ σ-2/3, with σ the membrane tension. |
doi_str_mv | 10.1371/journal.pone.0210259 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2167793488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569840648</galeid><doaj_id>oai_doaj_org_article_e32de2cf58814fa892769a29eac74867</doaj_id><sourcerecordid>A569840648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f570934dfbb679755a260a28b1e32f23e80999896ff8ade7a8059cc5092a41573</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xMvm6EUvxYKBS0ehsymWQ3JTNZk4zovzfjTsuO9EJykXDynPfknLxV9RyCNcQMvrsJYxyUX-_DYNYAQYCIeFCdQoHRiiKAHx6dT6onKd0AQDCn9HF1ggElACJ0WvHrqIa0DzHXwdYpeNfVbeicSbXyYdjWeWxHr2Ldm74tqKmzyTsT09PqkVU-mWfzflZ9-_jh-uLz6vLq0-bi_HKlqUB5ZQkDAjedbVvKBCNEIQoU4i00GFmEDQdCCC6otVx1hikOiNCaAIFUAwnDZ9XLg-7ehyTnppNEkDJWhDkvxOZAdEHdyH10vYq_ZVBO_g2EuJUqZqe9kaVmZ5C2hHPYWMUFYlQoJIzSrOF0qvZ-rja2vem0GXJUfiG6vBncTm7DT0kxbkQDi8CbWSCGH6NJWfYuaeN9GV0Yp3ezgpWZgIK--ge9v7uZ2qrSgBtsKHX1JCrPCRW8AbSZqPU9VFmd6Z0uDrGuxBcJbxcJhcnmV96qMSW5-frl_9mr70v29RG7M8rnXXHVmF0Y0hJsDqCOIaVo7N2QIZCTwW-nISeDy9ngJe3F8QfdJd06Gv8Bcmzzsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167793488</pqid></control><display><type>article</type><title>Transport of solid bodies along tubular membrane tethers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Daniels, D R</creator><contributor>Atzberger, Paul J</contributor><creatorcontrib>Daniels, D R ; Atzberger, Paul J</creatorcontrib><description>We study the crucial role of membrane fluctuations in maintaining a narrow gap between a fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap, hence giving rise to a finite particle mobility along the tube. While our study has relevance for how cells are able to transport large organelles or other cargo along connecting membrane tubes, known as tunneling nanotubes, our calculations are also framed so that they can be tested by a specific in vitro experiment: A tubular membrane tether can be pulled from a membrane reservoir, such as an aspirated Giant Unilamellar Vesicle (GUV), e.g. using a conjugated bead that binds to the membrane and is held in a laser trap. We compute the subsequent mobility of colloidal particles trapped in the tube, focusing on the case when the particle is large compared to the equilibrium tube radius. We predict that the particle mobility should scale as ∼ σ-2/3, with σ the membrane tension.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0210259</identifier><identifier>PMID: 30650122</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological Transport, Active ; Biology and Life Sciences ; Biophysical Phenomena ; Colloids ; Cytoplasm ; Elasticity ; Engineering and Technology ; Equilibrium ; Fluid mechanics ; Hydrodynamics ; Lipids ; Medicine and Health Sciences ; Membrane Fluidity ; Membrane Microdomains - physiology ; Membrane Microdomains - ultrastructure ; Membranes ; Mobility ; Models, Biological ; Nanotechnology ; Nanotubes ; Non-Newtonian fluids ; Organelles ; Organelles - physiology ; Particulate matter ; Physical Sciences ; Reynolds number ; Solvents ; Tethers ; Transport ; Tubes ; Unilamellar Liposomes ; Variations</subject><ispartof>PloS one, 2019-01, Vol.14 (1), p.e0210259-e0210259</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 D. R. Daniels. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 D. R. Daniels 2019 D. R. Daniels</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f570934dfbb679755a260a28b1e32f23e80999896ff8ade7a8059cc5092a41573</citedby><cites>FETCH-LOGICAL-c692t-f570934dfbb679755a260a28b1e32f23e80999896ff8ade7a8059cc5092a41573</cites><orcidid>0000-0002-6933-8144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334941/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334941/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30650122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Atzberger, Paul J</contributor><creatorcontrib>Daniels, D R</creatorcontrib><title>Transport of solid bodies along tubular membrane tethers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We study the crucial role of membrane fluctuations in maintaining a narrow gap between a fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap, hence giving rise to a finite particle mobility along the tube. While our study has relevance for how cells are able to transport large organelles or other cargo along connecting membrane tubes, known as tunneling nanotubes, our calculations are also framed so that they can be tested by a specific in vitro experiment: A tubular membrane tether can be pulled from a membrane reservoir, such as an aspirated Giant Unilamellar Vesicle (GUV), e.g. using a conjugated bead that binds to the membrane and is held in a laser trap. We compute the subsequent mobility of colloidal particles trapped in the tube, focusing on the case when the particle is large compared to the equilibrium tube radius. We predict that the particle mobility should scale as ∼ σ-2/3, with σ the membrane tension.</description><subject>Animals</subject><subject>Biological Transport, Active</subject><subject>Biology and Life Sciences</subject><subject>Biophysical Phenomena</subject><subject>Colloids</subject><subject>Cytoplasm</subject><subject>Elasticity</subject><subject>Engineering and Technology</subject><subject>Equilibrium</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Lipids</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Fluidity</subject><subject>Membrane Microdomains - physiology</subject><subject>Membrane Microdomains - ultrastructure</subject><subject>Membranes</subject><subject>Mobility</subject><subject>Models, Biological</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Non-Newtonian fluids</subject><subject>Organelles</subject><subject>Organelles - physiology</subject><subject>Particulate matter</subject><subject>Physical Sciences</subject><subject>Reynolds number</subject><subject>Solvents</subject><subject>Tethers</subject><subject>Transport</subject><subject>Tubes</subject><subject>Unilamellar Liposomes</subject><subject>Variations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xMvm6EUvxYKBS0ehsymWQ3JTNZk4zovzfjTsuO9EJykXDynPfknLxV9RyCNcQMvrsJYxyUX-_DYNYAQYCIeFCdQoHRiiKAHx6dT6onKd0AQDCn9HF1ggElACJ0WvHrqIa0DzHXwdYpeNfVbeicSbXyYdjWeWxHr2Ldm74tqKmzyTsT09PqkVU-mWfzflZ9-_jh-uLz6vLq0-bi_HKlqUB5ZQkDAjedbVvKBCNEIQoU4i00GFmEDQdCCC6otVx1hikOiNCaAIFUAwnDZ9XLg-7ehyTnppNEkDJWhDkvxOZAdEHdyH10vYq_ZVBO_g2EuJUqZqe9kaVmZ5C2hHPYWMUFYlQoJIzSrOF0qvZ-rja2vem0GXJUfiG6vBncTm7DT0kxbkQDi8CbWSCGH6NJWfYuaeN9GV0Yp3ezgpWZgIK--ge9v7uZ2qrSgBtsKHX1JCrPCRW8AbSZqPU9VFmd6Z0uDrGuxBcJbxcJhcnmV96qMSW5-frl_9mr70v29RG7M8rnXXHVmF0Y0hJsDqCOIaVo7N2QIZCTwW-nISeDy9ngJe3F8QfdJd06Gv8Bcmzzsg</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Daniels, D R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6933-8144</orcidid></search><sort><creationdate>20190116</creationdate><title>Transport of solid bodies along tubular membrane tethers</title><author>Daniels, D R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f570934dfbb679755a260a28b1e32f23e80999896ff8ade7a8059cc5092a41573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological Transport, Active</topic><topic>Biology and Life Sciences</topic><topic>Biophysical Phenomena</topic><topic>Colloids</topic><topic>Cytoplasm</topic><topic>Elasticity</topic><topic>Engineering and Technology</topic><topic>Equilibrium</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Lipids</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Fluidity</topic><topic>Membrane Microdomains - physiology</topic><topic>Membrane Microdomains - ultrastructure</topic><topic>Membranes</topic><topic>Mobility</topic><topic>Models, Biological</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Non-Newtonian fluids</topic><topic>Organelles</topic><topic>Organelles - physiology</topic><topic>Particulate matter</topic><topic>Physical Sciences</topic><topic>Reynolds number</topic><topic>Solvents</topic><topic>Tethers</topic><topic>Transport</topic><topic>Tubes</topic><topic>Unilamellar Liposomes</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniels, D R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniels, D R</au><au>Atzberger, Paul J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of solid bodies along tubular membrane tethers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-01-16</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>e0210259</spage><epage>e0210259</epage><pages>e0210259-e0210259</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We study the crucial role of membrane fluctuations in maintaining a narrow gap between a fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap, hence giving rise to a finite particle mobility along the tube. While our study has relevance for how cells are able to transport large organelles or other cargo along connecting membrane tubes, known as tunneling nanotubes, our calculations are also framed so that they can be tested by a specific in vitro experiment: A tubular membrane tether can be pulled from a membrane reservoir, such as an aspirated Giant Unilamellar Vesicle (GUV), e.g. using a conjugated bead that binds to the membrane and is held in a laser trap. We compute the subsequent mobility of colloidal particles trapped in the tube, focusing on the case when the particle is large compared to the equilibrium tube radius. We predict that the particle mobility should scale as ∼ σ-2/3, with σ the membrane tension.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30650122</pmid><doi>10.1371/journal.pone.0210259</doi><tpages>e0210259</tpages><orcidid>https://orcid.org/0000-0002-6933-8144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-01, Vol.14 (1), p.e0210259-e0210259 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2167793488 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Transport, Active Biology and Life Sciences Biophysical Phenomena Colloids Cytoplasm Elasticity Engineering and Technology Equilibrium Fluid mechanics Hydrodynamics Lipids Medicine and Health Sciences Membrane Fluidity Membrane Microdomains - physiology Membrane Microdomains - ultrastructure Membranes Mobility Models, Biological Nanotechnology Nanotubes Non-Newtonian fluids Organelles Organelles - physiology Particulate matter Physical Sciences Reynolds number Solvents Tethers Transport Tubes Unilamellar Liposomes Variations |
title | Transport of solid bodies along tubular membrane tethers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20solid%20bodies%20along%20tubular%20membrane%20tethers&rft.jtitle=PloS%20one&rft.au=Daniels,%20D%20R&rft.date=2019-01-16&rft.volume=14&rft.issue=1&rft.spage=e0210259&rft.epage=e0210259&rft.pages=e0210259-e0210259&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0210259&rft_dat=%3Cgale_plos_%3EA569840648%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167793488&rft_id=info:pmid/30650122&rft_galeid=A569840648&rft_doaj_id=oai_doaj_org_article_e32de2cf58814fa892769a29eac74867&rfr_iscdi=true |