Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum

In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-01, Vol.14 (1), p.e0210008-e0210008
Hauptverfasser: Banerjee, Deepanwita, Raghunathan, Anu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0210008
container_issue 1
container_start_page e0210008
container_title PloS one
container_volume 14
creator Banerjee, Deepanwita
Raghunathan, Anu
description In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resistance and induce susceptibility to existing antibiotics. A genome-scale metabolic model (GSMM) for Chromobacterium violaceum, an opportunistic human pathogen, was reconstructed using legacy data. Experimental constraints were used to represent antibiotic susceptible and resistant populations. Model predictions were validated using growth and respiration data successfully. Differential flux distribution and metabolic reprogramming were identified as a response to antibiotics, chloramphenicol and streptomycin. Streptomycin resistant populations (StrpR) redirected tricarboxylic acid (TCA) cycle flux through the glyoxylate shunt. Chloramphenicol resistant populations (ChlR) resorted to overflow metabolism producing acetate and formate. This switch to fermentative metabolism is potentially through excess reducing equivalents and increased NADH/NAD ratios. Reduced proton gradients and changed Proton Motive Force (PMF) induced by antibiotics were also predicted and verified experimentally using flow cytometry based membrane potential measurements. Pareto analysis of NADH and ATP maintenance showed the decoupling of electron transfer and ATP synthesis in StrpR. Redox homeostasis and NAD+ cycling through rewiring metabolic flux was implicated in re-sensitizing antibiotic resistant C. violaceum. These approaches can be used to probe metabolic vulnerabilities of resistant pathogens. On the verge of a post-antibiotic era, we foresee a critical need for systems level understanding of pathogens and host interaction to extend shelf life of antibiotics and strategize novel therapies.
doi_str_mv 10.1371/journal.pone.0210008
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2163344721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7b9a94d564234e5e9d57758ebc6890ff</doaj_id><sourcerecordid>2163344721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-a5b6a476e62dbefc590b25acb4ac55aa98d86e12b96d99c6b80ab0f1693140753</originalsourceid><addsrcrecordid>eNptkt1u1DAQhSMEoqXwBggiuEFCu9jxT-IbpGr5q1TBDVxbY2ey61USL7ZTaV-A58a7m1Yt4sqWz5lvPKNTFC8pWVJW0w9bP4UR-uXOj7gkFSWENI-Kc6pYtZAVYY_v3c-KZzFuCRGskfJpccaIJI2q6XnxZ-XHmAK4McWFgYhtCZm6jy6WrsUxuc5hLL9ffnpfBrR727txXaZN8NN6Uw6YwPje2aztgl8HGIaD7sZMSc44n45apqX8UK5y3eAN2ITBTUN543wPFqfhefGkgz7ii_m8KH59-fxz9W1x_ePr1eryemGFYGkBwkjgtURZtQY7KxQxlQBrOGQDgGraRiKtjJKtUlaahoAhHZWKUU5qwS6K1yfurvdRzyuMuqKSMc7rimbH1cnRetjqXXADhL324PTxwYe1hpCn6lHXRoHirZC8YhwFqlbUtWjQWNko0nWZ9XHuNpkBW5vXGaB_AH2ojG6j1_5GS0ZVzaoMeHMC-JicjtYltBvrxxFt0lQoVSueTe_mLsH_njAmPbhose9hRD8dh-OUZKDK1rf_WP-_An5y2eBjDNjd_ZgSfcjebZU-ZE_P2ctlr-5Pe1d0Gzb2Fw532v4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163344721</pqid></control><display><type>article</type><title>Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Banerjee, Deepanwita ; Raghunathan, Anu</creator><contributor>Singh, Pankaj K</contributor><creatorcontrib>Banerjee, Deepanwita ; Raghunathan, Anu ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Singh, Pankaj K</creatorcontrib><description>In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resistance and induce susceptibility to existing antibiotics. A genome-scale metabolic model (GSMM) for Chromobacterium violaceum, an opportunistic human pathogen, was reconstructed using legacy data. Experimental constraints were used to represent antibiotic susceptible and resistant populations. Model predictions were validated using growth and respiration data successfully. Differential flux distribution and metabolic reprogramming were identified as a response to antibiotics, chloramphenicol and streptomycin. Streptomycin resistant populations (StrpR) redirected tricarboxylic acid (TCA) cycle flux through the glyoxylate shunt. Chloramphenicol resistant populations (ChlR) resorted to overflow metabolism producing acetate and formate. This switch to fermentative metabolism is potentially through excess reducing equivalents and increased NADH/NAD ratios. Reduced proton gradients and changed Proton Motive Force (PMF) induced by antibiotics were also predicted and verified experimentally using flow cytometry based membrane potential measurements. Pareto analysis of NADH and ATP maintenance showed the decoupling of electron transfer and ATP synthesis in StrpR. Redox homeostasis and NAD+ cycling through rewiring metabolic flux was implicated in re-sensitizing antibiotic resistant C. violaceum. These approaches can be used to probe metabolic vulnerabilities of resistant pathogens. On the verge of a post-antibiotic era, we foresee a critical need for systems level understanding of pathogens and host interaction to extend shelf life of antibiotics and strategize novel therapies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0210008</identifier><identifier>PMID: 30608971</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetic acid ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; ATP ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; Biology and Life Sciences ; Biomass ; Chemical engineering ; Chloramphenicol ; Chloromycetin ; Chromobacterium ; Chromobacterium - drug effects ; chromobacterium violaceum ; Citric Acid - metabolism ; Citric Acid Cycle - drug effects ; Data Mining ; Decoupling ; drug metabolism ; Drug resistance ; Electron transfer ; Energy metabolism ; Flow cytometry ; Fluctuations ; Flux ; Genes ; Genetic engineering ; Genomes ; Genomics ; Genotypes ; Glucose ; Glucose - metabolism ; Homeostasis ; Infections ; Laboratories ; Mathematical models ; Medicine and Health Sciences ; Membrane potential ; Metabolic flux ; Metabolism ; Metabolites ; NAD ; NAD - metabolism ; NADH ; Nicotinamide adenine dinucleotide ; Opportunist infection ; Overflow ; Oxalic Acid - metabolism ; oxidation-reduction reactions ; oxygen metabolism ; Pareto analysis ; Pathogens ; Phenotypes ; Physical Sciences ; Physiology ; Populations ; Predictions ; Proteins ; Protonmotive force ; pyruvate ; Redox properties ; Rewiring ; Sensitizing ; Shelf life ; Shunt resistance ; Streptomycin ; Tricarboxylic acid cycle</subject><ispartof>PloS one, 2019-01, Vol.14 (1), p.e0210008-e0210008</ispartof><rights>2019 Banerjee, Raghunathan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Banerjee, Raghunathan 2019 Banerjee, Raghunathan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-a5b6a476e62dbefc590b25acb4ac55aa98d86e12b96d99c6b80ab0f1693140753</citedby><cites>FETCH-LOGICAL-c553t-a5b6a476e62dbefc590b25acb4ac55aa98d86e12b96d99c6b80ab0f1693140753</cites><orcidid>0000-0002-7063-9606 ; 0000000270639606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319732/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319732/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30608971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1599794$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Singh, Pankaj K</contributor><creatorcontrib>Banerjee, Deepanwita</creatorcontrib><creatorcontrib>Raghunathan, Anu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resistance and induce susceptibility to existing antibiotics. A genome-scale metabolic model (GSMM) for Chromobacterium violaceum, an opportunistic human pathogen, was reconstructed using legacy data. Experimental constraints were used to represent antibiotic susceptible and resistant populations. Model predictions were validated using growth and respiration data successfully. Differential flux distribution and metabolic reprogramming were identified as a response to antibiotics, chloramphenicol and streptomycin. Streptomycin resistant populations (StrpR) redirected tricarboxylic acid (TCA) cycle flux through the glyoxylate shunt. Chloramphenicol resistant populations (ChlR) resorted to overflow metabolism producing acetate and formate. This switch to fermentative metabolism is potentially through excess reducing equivalents and increased NADH/NAD ratios. Reduced proton gradients and changed Proton Motive Force (PMF) induced by antibiotics were also predicted and verified experimentally using flow cytometry based membrane potential measurements. Pareto analysis of NADH and ATP maintenance showed the decoupling of electron transfer and ATP synthesis in StrpR. Redox homeostasis and NAD+ cycling through rewiring metabolic flux was implicated in re-sensitizing antibiotic resistant C. violaceum. These approaches can be used to probe metabolic vulnerabilities of resistant pathogens. On the verge of a post-antibiotic era, we foresee a critical need for systems level understanding of pathogens and host interaction to extend shelf life of antibiotics and strategize novel therapies.</description><subject>Acetic acid</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>ATP</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Chemical engineering</subject><subject>Chloramphenicol</subject><subject>Chloromycetin</subject><subject>Chromobacterium</subject><subject>Chromobacterium - drug effects</subject><subject>chromobacterium violaceum</subject><subject>Citric Acid - metabolism</subject><subject>Citric Acid Cycle - drug effects</subject><subject>Data Mining</subject><subject>Decoupling</subject><subject>drug metabolism</subject><subject>Drug resistance</subject><subject>Electron transfer</subject><subject>Energy metabolism</subject><subject>Flow cytometry</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Homeostasis</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Metabolic flux</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Opportunist infection</subject><subject>Overflow</subject><subject>Oxalic Acid - metabolism</subject><subject>oxidation-reduction reactions</subject><subject>oxygen metabolism</subject><subject>Pareto analysis</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Populations</subject><subject>Predictions</subject><subject>Proteins</subject><subject>Protonmotive force</subject><subject>pyruvate</subject><subject>Redox properties</subject><subject>Rewiring</subject><subject>Sensitizing</subject><subject>Shelf life</subject><subject>Shunt resistance</subject><subject>Streptomycin</subject><subject>Tricarboxylic acid cycle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1u1DAQhSMEoqXwBggiuEFCu9jxT-IbpGr5q1TBDVxbY2ey61USL7ZTaV-A58a7m1Yt4sqWz5lvPKNTFC8pWVJW0w9bP4UR-uXOj7gkFSWENI-Kc6pYtZAVYY_v3c-KZzFuCRGskfJpccaIJI2q6XnxZ-XHmAK4McWFgYhtCZm6jy6WrsUxuc5hLL9ffnpfBrR727txXaZN8NN6Uw6YwPje2aztgl8HGIaD7sZMSc44n45apqX8UK5y3eAN2ITBTUN543wPFqfhefGkgz7ii_m8KH59-fxz9W1x_ePr1eryemGFYGkBwkjgtURZtQY7KxQxlQBrOGQDgGraRiKtjJKtUlaahoAhHZWKUU5qwS6K1yfurvdRzyuMuqKSMc7rimbH1cnRetjqXXADhL324PTxwYe1hpCn6lHXRoHirZC8YhwFqlbUtWjQWNko0nWZ9XHuNpkBW5vXGaB_AH2ojG6j1_5GS0ZVzaoMeHMC-JicjtYltBvrxxFt0lQoVSueTe_mLsH_njAmPbhose9hRD8dh-OUZKDK1rf_WP-_An5y2eBjDNjd_ZgSfcjebZU-ZE_P2ctlr-5Pe1d0Gzb2Fw532v4</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Banerjee, Deepanwita</creator><creator>Raghunathan, Anu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7063-9606</orcidid><orcidid>https://orcid.org/0000000270639606</orcidid></search><sort><creationdate>20190101</creationdate><title>Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum</title><author>Banerjee, Deepanwita ; Raghunathan, Anu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-a5b6a476e62dbefc590b25acb4ac55aa98d86e12b96d99c6b80ab0f1693140753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic acid</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>ATP</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Chemical engineering</topic><topic>Chloramphenicol</topic><topic>Chloromycetin</topic><topic>Chromobacterium</topic><topic>Chromobacterium - drug effects</topic><topic>chromobacterium violaceum</topic><topic>Citric Acid - metabolism</topic><topic>Citric Acid Cycle - drug effects</topic><topic>Data Mining</topic><topic>Decoupling</topic><topic>drug metabolism</topic><topic>Drug resistance</topic><topic>Electron transfer</topic><topic>Energy metabolism</topic><topic>Flow cytometry</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Homeostasis</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Metabolic flux</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Opportunist infection</topic><topic>Overflow</topic><topic>Oxalic Acid - metabolism</topic><topic>oxidation-reduction reactions</topic><topic>oxygen metabolism</topic><topic>Pareto analysis</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Populations</topic><topic>Predictions</topic><topic>Proteins</topic><topic>Protonmotive force</topic><topic>pyruvate</topic><topic>Redox properties</topic><topic>Rewiring</topic><topic>Sensitizing</topic><topic>Shelf life</topic><topic>Shunt resistance</topic><topic>Streptomycin</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Deepanwita</creatorcontrib><creatorcontrib>Raghunathan, Anu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Deepanwita</au><au>Raghunathan, Anu</au><au>Singh, Pankaj K</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>e0210008</spage><epage>e0210008</epage><pages>e0210008-e0210008</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resistance and induce susceptibility to existing antibiotics. A genome-scale metabolic model (GSMM) for Chromobacterium violaceum, an opportunistic human pathogen, was reconstructed using legacy data. Experimental constraints were used to represent antibiotic susceptible and resistant populations. Model predictions were validated using growth and respiration data successfully. Differential flux distribution and metabolic reprogramming were identified as a response to antibiotics, chloramphenicol and streptomycin. Streptomycin resistant populations (StrpR) redirected tricarboxylic acid (TCA) cycle flux through the glyoxylate shunt. Chloramphenicol resistant populations (ChlR) resorted to overflow metabolism producing acetate and formate. This switch to fermentative metabolism is potentially through excess reducing equivalents and increased NADH/NAD ratios. Reduced proton gradients and changed Proton Motive Force (PMF) induced by antibiotics were also predicted and verified experimentally using flow cytometry based membrane potential measurements. Pareto analysis of NADH and ATP maintenance showed the decoupling of electron transfer and ATP synthesis in StrpR. Redox homeostasis and NAD+ cycling through rewiring metabolic flux was implicated in re-sensitizing antibiotic resistant C. violaceum. These approaches can be used to probe metabolic vulnerabilities of resistant pathogens. On the verge of a post-antibiotic era, we foresee a critical need for systems level understanding of pathogens and host interaction to extend shelf life of antibiotics and strategize novel therapies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30608971</pmid><doi>10.1371/journal.pone.0210008</doi><orcidid>https://orcid.org/0000-0002-7063-9606</orcidid><orcidid>https://orcid.org/0000000270639606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-01, Vol.14 (1), p.e0210008-e0210008
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2163344721
source Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Acetic acid
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
ATP
Bacteria
BASIC BIOLOGICAL SCIENCES
Biology and Life Sciences
Biomass
Chemical engineering
Chloramphenicol
Chloromycetin
Chromobacterium
Chromobacterium - drug effects
chromobacterium violaceum
Citric Acid - metabolism
Citric Acid Cycle - drug effects
Data Mining
Decoupling
drug metabolism
Drug resistance
Electron transfer
Energy metabolism
Flow cytometry
Fluctuations
Flux
Genes
Genetic engineering
Genomes
Genomics
Genotypes
Glucose
Glucose - metabolism
Homeostasis
Infections
Laboratories
Mathematical models
Medicine and Health Sciences
Membrane potential
Metabolic flux
Metabolism
Metabolites
NAD
NAD - metabolism
NADH
Nicotinamide adenine dinucleotide
Opportunist infection
Overflow
Oxalic Acid - metabolism
oxidation-reduction reactions
oxygen metabolism
Pareto analysis
Pathogens
Phenotypes
Physical Sciences
Physiology
Populations
Predictions
Proteins
Protonmotive force
pyruvate
Redox properties
Rewiring
Sensitizing
Shelf life
Shunt resistance
Streptomycin
Tricarboxylic acid cycle
title Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints-based%20analysis%20identifies%20NAD+%20recycling%20through%20metabolic%20reprogramming%20in%20antibiotic%20resistant%20Chromobacterium%20violaceum&rft.jtitle=PloS%20one&rft.au=Banerjee,%20Deepanwita&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-01-01&rft.volume=14&rft.issue=1&rft.spage=e0210008&rft.epage=e0210008&rft.pages=e0210008-e0210008&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0210008&rft_dat=%3Cproquest_plos_%3E2163344721%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163344721&rft_id=info:pmid/30608971&rft_doaj_id=oai_doaj_org_article_7b9a94d564234e5e9d57758ebc6890ff&rfr_iscdi=true