Automatic interpretation of otoliths using deep learning
The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-12, Vol.13 (12), p.e0204713-e0204713 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0204713 |
---|---|
container_issue | 12 |
container_start_page | e0204713 |
container_title | PloS one |
container_volume | 13 |
creator | Moen, Endre Handegard, Nils Olav Allken, Vaneeda Albert, Ole Thomas Harbitz, Alf Malde, Ketil |
description | The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive and dependent on specialist expertise. Recent advances in machine learning have provided methods that have been remarkably successful in a variety of settings, with potential to automate analysis that previously required manual curation. Machine learning models have previously been successfully applied to object recognition and similar image analysis tasks. Here we investigate whether deep learning models can also be used for estimating the age of otoliths from images. We adapt a pre-trained convolutional neural network designed for object recognition, to estimate the age of fish from otolith images. The model is trained and validated on a large collection of images of Greenland halibut otoliths. We show that the model works well, and that its precision is comparable to documented precision obtained by human experts. Automating this analysis may help to improve consistency, lower cost, and increase the extent of age estimation. Given that adequate data are available, this method could also be used to estimate age of other species using images of otoliths or fish scales. |
doi_str_mv | 10.1371/journal.pone.0204713 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2157875017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A566058122</galeid><doaj_id>oai_doaj_org_article_a1782d9712a44d35b71bddb39d09170f</doaj_id><sourcerecordid>A566058122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-3dd5dfc4d81f9cdefbc13d4e92d4885486b5836537c5bf2976f8642242b6d9903</originalsourceid><addsrcrecordid>eNqNkkmLFDEcxQtRnHH0G4gWCKKHbrNUlroIzeDSMDDgdg2pLN1p0pU2SYl-e1PTNUOXzEFyyPb7v-Qlr6qeQ7CEmMF3uzDEXvrlIfRmCRBoGMQPqnPYYrSgCOCHJ-Oz6klKOwAI5pQ-rs4wIIRhTM4rvhpy2MvsVO36bOIhmlxmoa-DrUMO3uVtqofk-k2tjTnU3sjYl9nT6pGVPplnU39Rff_44dvl58XV9af15epqoRjheYG1JtqqRnNoW6WN7RTEujEt0g3npOG0IxxTgpkinUUto5bTBqEGdVS3LcAX1cuj7sGHJCbTSSBIGGcEQFaI9ZHQQe7EIbq9jH9EkE7cLIS4ETIWg94ICRlHumUQyabRmHQMdlp3uNWghQzYovV-Om3o9kYr0-co_Ux0vtO7rdiEX4KilhKEi8CbSSCGn4NJWexdUsZ72Zsw3NybF3OQo4K--ge9391EbWQx4HobyrlqFBUrQikgHKJRa3kPVZo2e6dKQqwr67OCt7OCwmTzO2_kkJJYf_3y_-z1jzn7-oTdGulLfoIfxkilOdgcQRVDStHYu0eGQIwBv30NMQZcTAEvZS9OP-iu6DbR-C9kK_Qw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157875017</pqid></control><display><type>article</type><title>Automatic interpretation of otoliths using deep learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moen, Endre ; Handegard, Nils Olav ; Allken, Vaneeda ; Albert, Ole Thomas ; Harbitz, Alf ; Malde, Ketil</creator><contributor>Patterson, Heather M.</contributor><creatorcontrib>Moen, Endre ; Handegard, Nils Olav ; Allken, Vaneeda ; Albert, Ole Thomas ; Harbitz, Alf ; Malde, Ketil ; Patterson, Heather M.</creatorcontrib><description>The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive and dependent on specialist expertise. Recent advances in machine learning have provided methods that have been remarkably successful in a variety of settings, with potential to automate analysis that previously required manual curation. Machine learning models have previously been successfully applied to object recognition and similar image analysis tasks. Here we investigate whether deep learning models can also be used for estimating the age of otoliths from images. We adapt a pre-trained convolutional neural network designed for object recognition, to estimate the age of fish from otolith images. The model is trained and validated on a large collection of images of Greenland halibut otoliths. We show that the model works well, and that its precision is comparable to documented precision obtained by human experts. Automating this analysis may help to improve consistency, lower cost, and increase the extent of age estimation. Given that adequate data are available, this method could also be used to estimate age of other species using images of otoliths or fish scales.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204713</identifier><identifier>PMID: 30557335</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Age composition ; Age determination ; Animals ; Artificial intelligence ; Artificial neural networks ; Biology and Life Sciences ; Chronology ; Computer and Information Sciences ; Cost analysis ; Data collection ; Deep learning ; Engineering and Technology ; Fish ; Fish populations ; Fisheries ; Flounder - anatomy & histology ; Halibut ; Image analysis ; Image processing ; Image Processing, Computer-Assisted ; Information processing ; Learning ; Learning algorithms ; Machine Learning ; Medicine and Health Sciences ; Methods ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Object recognition ; Otolith organs ; Otolithic Membrane - anatomy & histology ; Otoliths ; Pattern recognition ; Research and Analysis Methods ; Scales</subject><ispartof>PloS one, 2018-12, Vol.13 (12), p.e0204713-e0204713</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Moen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Moen et al 2018 Moen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-3dd5dfc4d81f9cdefbc13d4e92d4885486b5836537c5bf2976f8642242b6d9903</citedby><cites>FETCH-LOGICAL-c758t-3dd5dfc4d81f9cdefbc13d4e92d4885486b5836537c5bf2976f8642242b6d9903</cites><orcidid>0000-0001-7381-1849 ; 0000-0003-4805-8992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296523/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296523/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30557335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Patterson, Heather M.</contributor><creatorcontrib>Moen, Endre</creatorcontrib><creatorcontrib>Handegard, Nils Olav</creatorcontrib><creatorcontrib>Allken, Vaneeda</creatorcontrib><creatorcontrib>Albert, Ole Thomas</creatorcontrib><creatorcontrib>Harbitz, Alf</creatorcontrib><creatorcontrib>Malde, Ketil</creatorcontrib><title>Automatic interpretation of otoliths using deep learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive and dependent on specialist expertise. Recent advances in machine learning have provided methods that have been remarkably successful in a variety of settings, with potential to automate analysis that previously required manual curation. Machine learning models have previously been successfully applied to object recognition and similar image analysis tasks. Here we investigate whether deep learning models can also be used for estimating the age of otoliths from images. We adapt a pre-trained convolutional neural network designed for object recognition, to estimate the age of fish from otolith images. The model is trained and validated on a large collection of images of Greenland halibut otoliths. We show that the model works well, and that its precision is comparable to documented precision obtained by human experts. Automating this analysis may help to improve consistency, lower cost, and increase the extent of age estimation. Given that adequate data are available, this method could also be used to estimate age of other species using images of otoliths or fish scales.</description><subject>Age</subject><subject>Age composition</subject><subject>Age determination</subject><subject>Animals</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Chronology</subject><subject>Computer and Information Sciences</subject><subject>Cost analysis</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Engineering and Technology</subject><subject>Fish</subject><subject>Fish populations</subject><subject>Fisheries</subject><subject>Flounder - anatomy & histology</subject><subject>Halibut</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Information processing</subject><subject>Learning</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>Otolith organs</subject><subject>Otolithic Membrane - anatomy & histology</subject><subject>Otoliths</subject><subject>Pattern recognition</subject><subject>Research and Analysis Methods</subject><subject>Scales</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkmLFDEcxQtRnHH0G4gWCKKHbrNUlroIzeDSMDDgdg2pLN1p0pU2SYl-e1PTNUOXzEFyyPb7v-Qlr6qeQ7CEmMF3uzDEXvrlIfRmCRBoGMQPqnPYYrSgCOCHJ-Oz6klKOwAI5pQ-rs4wIIRhTM4rvhpy2MvsVO36bOIhmlxmoa-DrUMO3uVtqofk-k2tjTnU3sjYl9nT6pGVPplnU39Rff_44dvl58XV9af15epqoRjheYG1JtqqRnNoW6WN7RTEujEt0g3npOG0IxxTgpkinUUto5bTBqEGdVS3LcAX1cuj7sGHJCbTSSBIGGcEQFaI9ZHQQe7EIbq9jH9EkE7cLIS4ETIWg94ICRlHumUQyabRmHQMdlp3uNWghQzYovV-Om3o9kYr0-co_Ux0vtO7rdiEX4KilhKEi8CbSSCGn4NJWexdUsZ72Zsw3NybF3OQo4K--ge9391EbWQx4HobyrlqFBUrQikgHKJRa3kPVZo2e6dKQqwr67OCt7OCwmTzO2_kkJJYf_3y_-z1jzn7-oTdGulLfoIfxkilOdgcQRVDStHYu0eGQIwBv30NMQZcTAEvZS9OP-iu6DbR-C9kK_Qw</recordid><startdate>20181217</startdate><enddate>20181217</enddate><creator>Moen, Endre</creator><creator>Handegard, Nils Olav</creator><creator>Allken, Vaneeda</creator><creator>Albert, Ole Thomas</creator><creator>Harbitz, Alf</creator><creator>Malde, Ketil</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7381-1849</orcidid><orcidid>https://orcid.org/0000-0003-4805-8992</orcidid></search><sort><creationdate>20181217</creationdate><title>Automatic interpretation of otoliths using deep learning</title><author>Moen, Endre ; Handegard, Nils Olav ; Allken, Vaneeda ; Albert, Ole Thomas ; Harbitz, Alf ; Malde, Ketil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-3dd5dfc4d81f9cdefbc13d4e92d4885486b5836537c5bf2976f8642242b6d9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age</topic><topic>Age composition</topic><topic>Age determination</topic><topic>Animals</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Chronology</topic><topic>Computer and Information Sciences</topic><topic>Cost analysis</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Engineering and Technology</topic><topic>Fish</topic><topic>Fish populations</topic><topic>Fisheries</topic><topic>Flounder - anatomy & histology</topic><topic>Halibut</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Information processing</topic><topic>Learning</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>Otolith organs</topic><topic>Otolithic Membrane - anatomy & histology</topic><topic>Otoliths</topic><topic>Pattern recognition</topic><topic>Research and Analysis Methods</topic><topic>Scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moen, Endre</creatorcontrib><creatorcontrib>Handegard, Nils Olav</creatorcontrib><creatorcontrib>Allken, Vaneeda</creatorcontrib><creatorcontrib>Albert, Ole Thomas</creatorcontrib><creatorcontrib>Harbitz, Alf</creatorcontrib><creatorcontrib>Malde, Ketil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moen, Endre</au><au>Handegard, Nils Olav</au><au>Allken, Vaneeda</au><au>Albert, Ole Thomas</au><au>Harbitz, Alf</au><au>Malde, Ketil</au><au>Patterson, Heather M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic interpretation of otoliths using deep learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-12-17</date><risdate>2018</risdate><volume>13</volume><issue>12</issue><spage>e0204713</spage><epage>e0204713</epage><pages>e0204713-e0204713</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The age structure of a fish population has important implications for recruitment processes and population fluctuations, and is a key input to fisheries-assessment models. The current method of determining age structure relies on manually reading age from otoliths, and the process is labor intensive and dependent on specialist expertise. Recent advances in machine learning have provided methods that have been remarkably successful in a variety of settings, with potential to automate analysis that previously required manual curation. Machine learning models have previously been successfully applied to object recognition and similar image analysis tasks. Here we investigate whether deep learning models can also be used for estimating the age of otoliths from images. We adapt a pre-trained convolutional neural network designed for object recognition, to estimate the age of fish from otolith images. The model is trained and validated on a large collection of images of Greenland halibut otoliths. We show that the model works well, and that its precision is comparable to documented precision obtained by human experts. Automating this analysis may help to improve consistency, lower cost, and increase the extent of age estimation. Given that adequate data are available, this method could also be used to estimate age of other species using images of otoliths or fish scales.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30557335</pmid><doi>10.1371/journal.pone.0204713</doi><tpages>e0204713</tpages><orcidid>https://orcid.org/0000-0001-7381-1849</orcidid><orcidid>https://orcid.org/0000-0003-4805-8992</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-12, Vol.13 (12), p.e0204713-e0204713 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2157875017 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Age Age composition Age determination Animals Artificial intelligence Artificial neural networks Biology and Life Sciences Chronology Computer and Information Sciences Cost analysis Data collection Deep learning Engineering and Technology Fish Fish populations Fisheries Flounder - anatomy & histology Halibut Image analysis Image processing Image Processing, Computer-Assisted Information processing Learning Learning algorithms Machine Learning Medicine and Health Sciences Methods Models, Theoretical Neural networks Neural Networks, Computer Object recognition Otolith organs Otolithic Membrane - anatomy & histology Otoliths Pattern recognition Research and Analysis Methods Scales |
title | Automatic interpretation of otoliths using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20interpretation%20of%20otoliths%20using%20deep%20learning&rft.jtitle=PloS%20one&rft.au=Moen,%20Endre&rft.date=2018-12-17&rft.volume=13&rft.issue=12&rft.spage=e0204713&rft.epage=e0204713&rft.pages=e0204713-e0204713&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204713&rft_dat=%3Cgale_plos_%3EA566058122%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157875017&rft_id=info:pmid/30557335&rft_galeid=A566058122&rft_doaj_id=oai_doaj_org_article_a1782d9712a44d35b71bddb39d09170f&rfr_iscdi=true |