Socioeconomic differences in body mass index in Spain: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy

Many studies have demonstrated the existence of simple, unidimensional socioeconomic gradients in body mass index (BMI). However, in the present paper we move beyond such traditional analyses by simultaneously considering multiple demographic and socioeconomic dimensions. Using the Spanish National...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-12, Vol.13 (12), p.e0208624-e0208624
Hauptverfasser: Hernández-Yumar, Aránzazu, Wemrell, Maria, Abásolo Alessón, Ignacio, González López-Valcárcel, Beatriz, Leckie, George, Merlo, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0208624
container_issue 12
container_start_page e0208624
container_title PloS one
container_volume 13
creator Hernández-Yumar, Aránzazu
Wemrell, Maria
Abásolo Alessón, Ignacio
González López-Valcárcel, Beatriz
Leckie, George
Merlo, Juan
description Many studies have demonstrated the existence of simple, unidimensional socioeconomic gradients in body mass index (BMI). However, in the present paper we move beyond such traditional analyses by simultaneously considering multiple demographic and socioeconomic dimensions. Using the Spanish National Health Survey 2011-2012, we apply intersectionality theory and multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) to analyze 14,190 adults nested within 108 intersectional strata defined by combining categories of gender, age, income, educational achievement and living situation. We develop two multilevel models to obtain information on stratum-specific BMI averages and the degree of clustering of BMI within strata expressed by the intra-class correlation coefficient (ICC). The first model is a simple variance components analysis that provides a detailed mapping of the BMI disparities in the population and measures the accuracy of stratum membership to predict individual BMI. The second model includes the variables used to define the intersectional strata as a way to identify stratum-specific interactions. The first model suggests moderate but meaningful clustering of individual BMI within the intersectional strata (ICC = 12.4%). Compared with the population average (BMI = 26.07 Kg/m2), the stratum of cohabiting 18-35-year-old females with medium income and high education presents the lowest BMI (-3.7 Kg/m2), while cohabiting 36-64-year-old females with low income and low education show the highest BMI (+2.6 Kg/m2). In the second model, the ICC falls to 1.9%, suggesting the existence of only very small stratum specific interaction effects. We confirm the existence of a socioeconomic gradient in BMI. Compared with traditional analyses, the intersectional MAIHDA approach provides a better mapping of socioeconomic and demographic inequalities in BMI. Because of the moderate clustering, public health policies aiming to reduce BMI in Spain should not solely focus on the intersectional strata with the highest BMI, but should also consider whole population polices.
doi_str_mv 10.1371/journal.pone.0208624
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2154247235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A565147593</galeid><doaj_id>oai_doaj_org_article_382d97a4a3bb414abb20beda35b8d9c6</doaj_id><sourcerecordid>A565147593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c799t-62fd2a112011e38ed296f9253b50f434e4539b7addc2103440e99b3d4ad22ca3</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7u1Tpbdi8KSngKBQBNyK3QY7ypora1lp9n36AN3vLsJ2ZJCMcKS_P2_RuOZLHtJiilhkny4ikPX6jBdxRamBS2qkvJH2SGpGZ2UtGCP780PsmcpXRWFYFVZPs0OGM4o5fww-30erY9gYxuX3ubONw100FpIuW9zE906X-o0LhzcjFvnK-3bj_msxUUPXQLb-4hx5Msh9D7ANYRc43qdfMpjMwr9tXcDEgtAQZxDC75fI-TwuGQ7v_St7mOHW9YOnbbr59mTRocEL3bvo-zi65eL4--T07NvJ8ez04mVdd3jzRpHNSG0IARYBY7WZVNTwYwoGs44cMFqI7VzlpKCcV5AXRvmuHaUWs2Ostdb21WISe3ymRQlglMuKRNInGwJF_WVWmGoulurqL3abMRurnTXextAsYq6WmqumTGccG0MLQw4zYSpXG1L9DrdeqVfsBrMnlsYVjgMDpVASce5KR1RtK6k4rq2SlNHVSMrK6imHK-AdpN_2n32l7NNcKEdFCGSSYb8p91lB7MEZ6HtOx32ZPtfWr9Q83itSlrJiko0eLcz6OLPAVKvlvj3IATdQhw2aRNEyFpQRN_8hT6c3B0115g_3zYRz7WjqZqJUhAuRT3GPX2AwscBFizWfoNFty94vydApoebfq6HlNTJ-Y__Z88u99m399gF6NAvUgzDWP5pH-Rb0HYxpQ6auySTQo2te5sNNbau2rUuyl7d_0F3otteZX8AMztBig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154247235</pqid></control><display><type>article</type><title>Socioeconomic differences in body mass index in Spain: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hernández-Yumar, Aránzazu ; Wemrell, Maria ; Abásolo Alessón, Ignacio ; González López-Valcárcel, Beatriz ; Leckie, George ; Merlo, Juan</creator><contributor>Meyre, David</contributor><creatorcontrib>Hernández-Yumar, Aránzazu ; Wemrell, Maria ; Abásolo Alessón, Ignacio ; González López-Valcárcel, Beatriz ; Leckie, George ; Merlo, Juan ; Meyre, David</creatorcontrib><description>Many studies have demonstrated the existence of simple, unidimensional socioeconomic gradients in body mass index (BMI). However, in the present paper we move beyond such traditional analyses by simultaneously considering multiple demographic and socioeconomic dimensions. Using the Spanish National Health Survey 2011-2012, we apply intersectionality theory and multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) to analyze 14,190 adults nested within 108 intersectional strata defined by combining categories of gender, age, income, educational achievement and living situation. We develop two multilevel models to obtain information on stratum-specific BMI averages and the degree of clustering of BMI within strata expressed by the intra-class correlation coefficient (ICC). The first model is a simple variance components analysis that provides a detailed mapping of the BMI disparities in the population and measures the accuracy of stratum membership to predict individual BMI. The second model includes the variables used to define the intersectional strata as a way to identify stratum-specific interactions. The first model suggests moderate but meaningful clustering of individual BMI within the intersectional strata (ICC = 12.4%). Compared with the population average (BMI = 26.07 Kg/m2), the stratum of cohabiting 18-35-year-old females with medium income and high education presents the lowest BMI (-3.7 Kg/m2), while cohabiting 36-64-year-old females with low income and low education show the highest BMI (+2.6 Kg/m2). In the second model, the ICC falls to 1.9%, suggesting the existence of only very small stratum specific interaction effects. We confirm the existence of a socioeconomic gradient in BMI. Compared with traditional analyses, the intersectional MAIHDA approach provides a better mapping of socioeconomic and demographic inequalities in BMI. Because of the moderate clustering, public health policies aiming to reduce BMI in Spain should not solely focus on the intersectional strata with the highest BMI, but should also consider whole population polices.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0208624</identifier><identifier>PMID: 30532244</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Academic achievement ; Adolescent ; Adult ; Adults ; Aged ; Analysis ; Biology and Life Sciences ; Body mass ; Body Mass Index ; Body size ; Caring Science ; Cluster Analysis ; Clustering ; Correlation coefficient ; Correlation coefficients ; Cross-Sectional Studies ; Demographics ; Education ; Educational Status ; Epidemiology ; Family Characteristics ; Female ; Females ; Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi ; Health aspects ; Health policy ; Health Sciences ; Health Surveys ; Heterogeneity ; Humans ; Hälsovetenskap ; Income ; Interviews as Topic ; Male ; Mapping ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicine and Health Sciences ; Middle Aged ; Multilevel ; Obesity ; People and places ; Public health ; Public Health, Global Health, Social Medicine and Epidemiology ; Social Sciences ; Socio-economic aspects ; Socioeconomics ; Spain ; Strata ; Studies ; Surveys ; Variance analysis ; Vårdvetenskap ; Young Adult</subject><ispartof>PloS one, 2018-12, Vol.13 (12), p.e0208624-e0208624</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Hernández-Yumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Hernández-Yumar et al 2018 Hernández-Yumar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c799t-62fd2a112011e38ed296f9253b50f434e4539b7addc2103440e99b3d4ad22ca3</citedby><cites>FETCH-LOGICAL-c799t-62fd2a112011e38ed296f9253b50f434e4539b7addc2103440e99b3d4ad22ca3</cites><orcidid>0000-0001-8379-9708 ; 0000-0002-3299-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,551,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30532244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-117373$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/7d44b6d1-2987-4a9c-a2d2-f78c52a243d4$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Meyre, David</contributor><creatorcontrib>Hernández-Yumar, Aránzazu</creatorcontrib><creatorcontrib>Wemrell, Maria</creatorcontrib><creatorcontrib>Abásolo Alessón, Ignacio</creatorcontrib><creatorcontrib>González López-Valcárcel, Beatriz</creatorcontrib><creatorcontrib>Leckie, George</creatorcontrib><creatorcontrib>Merlo, Juan</creatorcontrib><title>Socioeconomic differences in body mass index in Spain: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many studies have demonstrated the existence of simple, unidimensional socioeconomic gradients in body mass index (BMI). However, in the present paper we move beyond such traditional analyses by simultaneously considering multiple demographic and socioeconomic dimensions. Using the Spanish National Health Survey 2011-2012, we apply intersectionality theory and multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) to analyze 14,190 adults nested within 108 intersectional strata defined by combining categories of gender, age, income, educational achievement and living situation. We develop two multilevel models to obtain information on stratum-specific BMI averages and the degree of clustering of BMI within strata expressed by the intra-class correlation coefficient (ICC). The first model is a simple variance components analysis that provides a detailed mapping of the BMI disparities in the population and measures the accuracy of stratum membership to predict individual BMI. The second model includes the variables used to define the intersectional strata as a way to identify stratum-specific interactions. The first model suggests moderate but meaningful clustering of individual BMI within the intersectional strata (ICC = 12.4%). Compared with the population average (BMI = 26.07 Kg/m2), the stratum of cohabiting 18-35-year-old females with medium income and high education presents the lowest BMI (-3.7 Kg/m2), while cohabiting 36-64-year-old females with low income and low education show the highest BMI (+2.6 Kg/m2). In the second model, the ICC falls to 1.9%, suggesting the existence of only very small stratum specific interaction effects. We confirm the existence of a socioeconomic gradient in BMI. Compared with traditional analyses, the intersectional MAIHDA approach provides a better mapping of socioeconomic and demographic inequalities in BMI. Because of the moderate clustering, public health policies aiming to reduce BMI in Spain should not solely focus on the intersectional strata with the highest BMI, but should also consider whole population polices.</description><subject>Academic achievement</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Adults</subject><subject>Aged</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Body mass</subject><subject>Body Mass Index</subject><subject>Body size</subject><subject>Caring Science</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cross-Sectional Studies</subject><subject>Demographics</subject><subject>Education</subject><subject>Educational Status</subject><subject>Epidemiology</subject><subject>Family Characteristics</subject><subject>Female</subject><subject>Females</subject><subject>Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi</subject><subject>Health aspects</subject><subject>Health policy</subject><subject>Health Sciences</subject><subject>Health Surveys</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hälsovetenskap</subject><subject>Income</subject><subject>Interviews as Topic</subject><subject>Male</subject><subject>Mapping</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Multilevel</subject><subject>Obesity</subject><subject>People and places</subject><subject>Public health</subject><subject>Public Health, Global Health, Social Medicine and Epidemiology</subject><subject>Social Sciences</subject><subject>Socio-economic aspects</subject><subject>Socioeconomics</subject><subject>Spain</subject><subject>Strata</subject><subject>Studies</subject><subject>Surveys</subject><subject>Variance analysis</subject><subject>Vårdvetenskap</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7u1Tpbdi8KSngKBQBNyK3QY7ypora1lp9n36AN3vLsJ2ZJCMcKS_P2_RuOZLHtJiilhkny4ikPX6jBdxRamBS2qkvJH2SGpGZ2UtGCP780PsmcpXRWFYFVZPs0OGM4o5fww-30erY9gYxuX3ubONw100FpIuW9zE906X-o0LhzcjFvnK-3bj_msxUUPXQLb-4hx5Msh9D7ANYRc43qdfMpjMwr9tXcDEgtAQZxDC75fI-TwuGQ7v_St7mOHW9YOnbbr59mTRocEL3bvo-zi65eL4--T07NvJ8ez04mVdd3jzRpHNSG0IARYBY7WZVNTwYwoGs44cMFqI7VzlpKCcV5AXRvmuHaUWs2Ostdb21WISe3ymRQlglMuKRNInGwJF_WVWmGoulurqL3abMRurnTXextAsYq6WmqumTGccG0MLQw4zYSpXG1L9DrdeqVfsBrMnlsYVjgMDpVASce5KR1RtK6k4rq2SlNHVSMrK6imHK-AdpN_2n32l7NNcKEdFCGSSYb8p91lB7MEZ6HtOx32ZPtfWr9Q83itSlrJiko0eLcz6OLPAVKvlvj3IATdQhw2aRNEyFpQRN_8hT6c3B0115g_3zYRz7WjqZqJUhAuRT3GPX2AwscBFizWfoNFty94vydApoebfq6HlNTJ-Y__Z88u99m399gF6NAvUgzDWP5pH-Rb0HYxpQ6auySTQo2te5sNNbau2rUuyl7d_0F3otteZX8AMztBig</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>Hernández-Yumar, Aránzazu</creator><creator>Wemrell, Maria</creator><creator>Abásolo Alessón, Ignacio</creator><creator>González López-Valcárcel, Beatriz</creator><creator>Leckie, George</creator><creator>Merlo, Juan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>AGCHP</scope><scope>D95</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8379-9708</orcidid><orcidid>https://orcid.org/0000-0002-3299-4180</orcidid></search><sort><creationdate>20181210</creationdate><title>Socioeconomic differences in body mass index in Spain: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy</title><author>Hernández-Yumar, Aránzazu ; Wemrell, Maria ; Abásolo Alessón, Ignacio ; González López-Valcárcel, Beatriz ; Leckie, George ; Merlo, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c799t-62fd2a112011e38ed296f9253b50f434e4539b7addc2103440e99b3d4ad22ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Academic achievement</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Adults</topic><topic>Aged</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Body mass</topic><topic>Body Mass Index</topic><topic>Body size</topic><topic>Caring Science</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cross-Sectional Studies</topic><topic>Demographics</topic><topic>Education</topic><topic>Educational Status</topic><topic>Epidemiology</topic><topic>Family Characteristics</topic><topic>Female</topic><topic>Females</topic><topic>Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi</topic><topic>Health aspects</topic><topic>Health policy</topic><topic>Health Sciences</topic><topic>Health Surveys</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hälsovetenskap</topic><topic>Income</topic><topic>Interviews as Topic</topic><topic>Male</topic><topic>Mapping</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Multilevel</topic><topic>Obesity</topic><topic>People and places</topic><topic>Public health</topic><topic>Public Health, Global Health, Social Medicine and Epidemiology</topic><topic>Social Sciences</topic><topic>Socio-economic aspects</topic><topic>Socioeconomics</topic><topic>Spain</topic><topic>Strata</topic><topic>Studies</topic><topic>Surveys</topic><topic>Variance analysis</topic><topic>Vårdvetenskap</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Yumar, Aránzazu</creatorcontrib><creatorcontrib>Wemrell, Maria</creatorcontrib><creatorcontrib>Abásolo Alessón, Ignacio</creatorcontrib><creatorcontrib>González López-Valcárcel, Beatriz</creatorcontrib><creatorcontrib>Leckie, George</creatorcontrib><creatorcontrib>Merlo, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SWEPUB Lunds universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Yumar, Aránzazu</au><au>Wemrell, Maria</au><au>Abásolo Alessón, Ignacio</au><au>González López-Valcárcel, Beatriz</au><au>Leckie, George</au><au>Merlo, Juan</au><au>Meyre, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Socioeconomic differences in body mass index in Spain: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-12-10</date><risdate>2018</risdate><volume>13</volume><issue>12</issue><spage>e0208624</spage><epage>e0208624</epage><pages>e0208624-e0208624</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many studies have demonstrated the existence of simple, unidimensional socioeconomic gradients in body mass index (BMI). However, in the present paper we move beyond such traditional analyses by simultaneously considering multiple demographic and socioeconomic dimensions. Using the Spanish National Health Survey 2011-2012, we apply intersectionality theory and multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) to analyze 14,190 adults nested within 108 intersectional strata defined by combining categories of gender, age, income, educational achievement and living situation. We develop two multilevel models to obtain information on stratum-specific BMI averages and the degree of clustering of BMI within strata expressed by the intra-class correlation coefficient (ICC). The first model is a simple variance components analysis that provides a detailed mapping of the BMI disparities in the population and measures the accuracy of stratum membership to predict individual BMI. The second model includes the variables used to define the intersectional strata as a way to identify stratum-specific interactions. The first model suggests moderate but meaningful clustering of individual BMI within the intersectional strata (ICC = 12.4%). Compared with the population average (BMI = 26.07 Kg/m2), the stratum of cohabiting 18-35-year-old females with medium income and high education presents the lowest BMI (-3.7 Kg/m2), while cohabiting 36-64-year-old females with low income and low education show the highest BMI (+2.6 Kg/m2). In the second model, the ICC falls to 1.9%, suggesting the existence of only very small stratum specific interaction effects. We confirm the existence of a socioeconomic gradient in BMI. Compared with traditional analyses, the intersectional MAIHDA approach provides a better mapping of socioeconomic and demographic inequalities in BMI. Because of the moderate clustering, public health policies aiming to reduce BMI in Spain should not solely focus on the intersectional strata with the highest BMI, but should also consider whole population polices.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30532244</pmid><doi>10.1371/journal.pone.0208624</doi><tpages>e0208624</tpages><orcidid>https://orcid.org/0000-0001-8379-9708</orcidid><orcidid>https://orcid.org/0000-0002-3299-4180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-12, Vol.13 (12), p.e0208624-e0208624
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2154247235
source MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Academic achievement
Adolescent
Adult
Adults
Aged
Analysis
Biology and Life Sciences
Body mass
Body Mass Index
Body size
Caring Science
Cluster Analysis
Clustering
Correlation coefficient
Correlation coefficients
Cross-Sectional Studies
Demographics
Education
Educational Status
Epidemiology
Family Characteristics
Female
Females
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi
Health aspects
Health policy
Health Sciences
Health Surveys
Heterogeneity
Humans
Hälsovetenskap
Income
Interviews as Topic
Male
Mapping
Medical and Health Sciences
Medicin och hälsovetenskap
Medicine and Health Sciences
Middle Aged
Multilevel
Obesity
People and places
Public health
Public Health, Global Health, Social Medicine and Epidemiology
Social Sciences
Socio-economic aspects
Socioeconomics
Spain
Strata
Studies
Surveys
Variance analysis
Vårdvetenskap
Young Adult
title Socioeconomic differences in body mass index in Spain: An intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Socioeconomic%20differences%20in%20body%20mass%20index%20in%20Spain:%20An%20intersectional%20multilevel%20analysis%20of%20individual%20heterogeneity%20and%20discriminatory%20accuracy&rft.jtitle=PloS%20one&rft.au=Hern%C3%A1ndez-Yumar,%20Ar%C3%A1nzazu&rft.date=2018-12-10&rft.volume=13&rft.issue=12&rft.spage=e0208624&rft.epage=e0208624&rft.pages=e0208624-e0208624&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0208624&rft_dat=%3Cgale_plos_%3EA565147593%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154247235&rft_id=info:pmid/30532244&rft_galeid=A565147593&rft_doaj_id=oai_doaj_org_article_382d97a4a3bb414abb20beda35b8d9c6&rfr_iscdi=true