Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants
Drought is the most significant environmental stress for agricultural production worldwide, and tremendous efforts have been made to improve crop yield under the increasing water scarcity. Transcription factors are major players in the regulation of water stress-related genes in plants. Recently, di...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-12, Vol.13 (12), p.e0207534-e0207534 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0207534 |
---|---|
container_issue | 12 |
container_start_page | e0207534 |
container_title | PloS one |
container_volume | 13 |
creator | Fávero Peixoto-Junior, Rafael Mara de Andrade, Larissa Dos Santos Brito, Michael Macedo Nobile, Paula Palma Boer Martins, Alexandre Domingues Carlin, Samira Vasconcelos Ribeiro, Rafael de Souza Goldman, Maria Helena Nebó Carlos de Oliveira, João Felipe Vargas de Oliveira Figueira, Antonio Creste, Silvana |
description | Drought is the most significant environmental stress for agricultural production worldwide, and tremendous efforts have been made to improve crop yield under the increasing water scarcity. Transcription factors are major players in the regulation of water stress-related genes in plants. Recently, different MYB transcription factors were characterized for their involvement in drought response. A sugarcane R2R3-MYB gene (ScMYBAS1) and its four alternative forms of transcript (ScMYAS1-2, ScMYBAS1-3, ScMYBAS1-4 and ScMYBAS1-5) were identified in this study. The subcellular localization, in Nicotiniana benthamiana, of the TFs fused in frame with GFP revealed that ScMYBAS1-2-GFP and ScMYBAS1-3-GFP were observed in the nucleus. The overexpression of ScMYBAS1-2 and ScMYBAS1-3 spliced transcripts in rice promoted change in plant growth under both well-watered and drought conditions. The ScMYBAS1-2 and ScMYBAS1-3 transgenic lines revealed a higher relative water content (RWC) compared to the wild type before maximum stress under drought conditions. The ScMYBAS1-2 transgenic lines showed a reduction in biomass (total dry weight). Conversely, ScMYBAS1-3 showed an increased biomass (total dry weight) relative to the wild-type. The overexpression of ScMYBAS1-3 in rice transgenic lines showed involvement with drought tolerance and biomass and, for this reason, was considered a good target for plant transformation, particularly for use in developing genotypes with drought tolerance and biomass accumulation. |
doi_str_mv | 10.1371/journal.pone.0207534 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2150533607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A564417635</galeid><doaj_id>oai_doaj_org_article_e043149501b749c091efc49aae593e59</doaj_id><sourcerecordid>A564417635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-40fbf7d56c385c5d9701bc988f419b149f3690712f873093de6a13e37e0cd7a93</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxazKZj82NsBY_FioLrgpehWzmZDYlMxmTzNL-Ev-uZ9tt6UovZBgSMs95z8k752TZc0anjNfs3bkfQ6_cdPA9TGlO65IXD7JjJng-qXLKH97ZH2VPYjyntOSzqnqcHXFashpVjrM_yy0EuBgCxGh9T7whK_3114f5ihHlEmCKZLdA4uCstn1LUlB91MEOKZLGGoPRfbLKuUtiu0FpPF5b36kYidJ67EaHAiis-oY0wY_tJpHkHaCMBmJ7EiyuV6ot9FaTwak-xafZI6NchGf79ST78enj99Mvk7Pl58Xp_GyiK5GnSUHN2tRNWWk-K3XZiJqytRazmSmYWLNCGF4JWrPczGpOBW-gUowDr4HqplaCn2Qvr3UH56Pcexplzko0i1e0RmJxTTRencsh2E6FS-mVlVcHPrRShWS1Awm04JizxBrqQmgqGBhdCKWgFHz3nmTv99nGdQeNRuuCcgeih196u5Gt38oqnzEmchR4sxcI_vcIMcnORg0OPQM_XtUtBKJ8V_erf9D7b7enWoUXsL3xmFfvROW8rIqC1RUvkZreQ-HTQGc1NqCxeH4Q8PYgAJkEF6lVY4xysfr2_-zy5yH7-g67AWzRTfRu3LVYPASLa1AHH2MAc2syo3I3PzduyN38yP38YNiLuz_oNuhmYPhfLw4YEQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150533607</pqid></control><display><type>article</type><title>Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants</title><source>MEDLINE</source><source>Public Library of Science (PLoS)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fávero Peixoto-Junior, Rafael ; Mara de Andrade, Larissa ; Dos Santos Brito, Michael ; Macedo Nobile, Paula ; Palma Boer Martins, Alexandre ; Domingues Carlin, Samira ; Vasconcelos Ribeiro, Rafael ; de Souza Goldman, Maria Helena ; Nebó Carlos de Oliveira, João Felipe ; Vargas de Oliveira Figueira, Antonio ; Creste, Silvana</creator><contributor>Zhang, Jin-Song</contributor><creatorcontrib>Fávero Peixoto-Junior, Rafael ; Mara de Andrade, Larissa ; Dos Santos Brito, Michael ; Macedo Nobile, Paula ; Palma Boer Martins, Alexandre ; Domingues Carlin, Samira ; Vasconcelos Ribeiro, Rafael ; de Souza Goldman, Maria Helena ; Nebó Carlos de Oliveira, João Felipe ; Vargas de Oliveira Figueira, Antonio ; Creste, Silvana ; Zhang, Jin-Song</creatorcontrib><description>Drought is the most significant environmental stress for agricultural production worldwide, and tremendous efforts have been made to improve crop yield under the increasing water scarcity. Transcription factors are major players in the regulation of water stress-related genes in plants. Recently, different MYB transcription factors were characterized for their involvement in drought response. A sugarcane R2R3-MYB gene (ScMYBAS1) and its four alternative forms of transcript (ScMYAS1-2, ScMYBAS1-3, ScMYBAS1-4 and ScMYBAS1-5) were identified in this study. The subcellular localization, in Nicotiniana benthamiana, of the TFs fused in frame with GFP revealed that ScMYBAS1-2-GFP and ScMYBAS1-3-GFP were observed in the nucleus. The overexpression of ScMYBAS1-2 and ScMYBAS1-3 spliced transcripts in rice promoted change in plant growth under both well-watered and drought conditions. The ScMYBAS1-2 and ScMYBAS1-3 transgenic lines revealed a higher relative water content (RWC) compared to the wild type before maximum stress under drought conditions. The ScMYBAS1-2 transgenic lines showed a reduction in biomass (total dry weight). Conversely, ScMYBAS1-3 showed an increased biomass (total dry weight) relative to the wild-type. The overexpression of ScMYBAS1-3 in rice transgenic lines showed involvement with drought tolerance and biomass and, for this reason, was considered a good target for plant transformation, particularly for use in developing genotypes with drought tolerance and biomass accumulation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0207534</identifier><identifier>PMID: 30517137</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abiotic stress ; Accumulation ; Agricultural production ; Alternative splicing ; Alternative Splicing - genetics ; Binding sites ; Biology and Life Sciences ; Biomass ; Cell cycle ; Crop yield ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; Drought ; Drought conditions ; Drought resistance ; Droughts ; Ecology and Environmental Sciences ; Engineering and Technology ; Environmental stress ; Gene expression ; Gene Expression Regulation, Plant - genetics ; Gene regulation ; Genes ; Genes, myb - genetics ; Genetic aspects ; Genetic engineering ; Genetically engineered foods ; Genetically modified plants ; Genomes ; Genotypes ; Localization ; Moisture content ; Molecular biology ; MYB gene ; Oncogene Proteins v-myb - genetics ; Oryza - genetics ; Plant biology ; Plant genetics ; Plant growth ; Plant Proteins ; Plant sciences ; Plants (botany) ; Plants, Genetically Modified - genetics ; Proteins ; Research and Analysis Methods ; Rice ; Saccharum - genetics ; Shortages ; Stress response ; Stress, Physiological - genetics ; Sugarcane ; Transcription (Genetics) ; Transcription factors ; Transcription Factors - genetics ; Transformation ; Transgenic plants ; Water ; Water content ; Water resources ; Water scarcity ; Water stress ; Water wells ; Weight</subject><ispartof>PloS one, 2018-12, Vol.13 (12), p.e0207534-e0207534</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Fávero Peixoto-Junior et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Fávero Peixoto-Junior et al 2018 Fávero Peixoto-Junior et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-40fbf7d56c385c5d9701bc988f419b149f3690712f873093de6a13e37e0cd7a93</citedby><cites>FETCH-LOGICAL-c692t-40fbf7d56c385c5d9701bc988f419b149f3690712f873093de6a13e37e0cd7a93</cites><orcidid>0000-0002-6459-8684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30517137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Jin-Song</contributor><creatorcontrib>Fávero Peixoto-Junior, Rafael</creatorcontrib><creatorcontrib>Mara de Andrade, Larissa</creatorcontrib><creatorcontrib>Dos Santos Brito, Michael</creatorcontrib><creatorcontrib>Macedo Nobile, Paula</creatorcontrib><creatorcontrib>Palma Boer Martins, Alexandre</creatorcontrib><creatorcontrib>Domingues Carlin, Samira</creatorcontrib><creatorcontrib>Vasconcelos Ribeiro, Rafael</creatorcontrib><creatorcontrib>de Souza Goldman, Maria Helena</creatorcontrib><creatorcontrib>Nebó Carlos de Oliveira, João Felipe</creatorcontrib><creatorcontrib>Vargas de Oliveira Figueira, Antonio</creatorcontrib><creatorcontrib>Creste, Silvana</creatorcontrib><title>Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Drought is the most significant environmental stress for agricultural production worldwide, and tremendous efforts have been made to improve crop yield under the increasing water scarcity. Transcription factors are major players in the regulation of water stress-related genes in plants. Recently, different MYB transcription factors were characterized for their involvement in drought response. A sugarcane R2R3-MYB gene (ScMYBAS1) and its four alternative forms of transcript (ScMYAS1-2, ScMYBAS1-3, ScMYBAS1-4 and ScMYBAS1-5) were identified in this study. The subcellular localization, in Nicotiniana benthamiana, of the TFs fused in frame with GFP revealed that ScMYBAS1-2-GFP and ScMYBAS1-3-GFP were observed in the nucleus. The overexpression of ScMYBAS1-2 and ScMYBAS1-3 spliced transcripts in rice promoted change in plant growth under both well-watered and drought conditions. The ScMYBAS1-2 and ScMYBAS1-3 transgenic lines revealed a higher relative water content (RWC) compared to the wild type before maximum stress under drought conditions. The ScMYBAS1-2 transgenic lines showed a reduction in biomass (total dry weight). Conversely, ScMYBAS1-3 showed an increased biomass (total dry weight) relative to the wild-type. The overexpression of ScMYBAS1-3 in rice transgenic lines showed involvement with drought tolerance and biomass and, for this reason, was considered a good target for plant transformation, particularly for use in developing genotypes with drought tolerance and biomass accumulation.</description><subject>Abiotic stress</subject><subject>Accumulation</subject><subject>Agricultural production</subject><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Cell cycle</subject><subject>Crop yield</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>Drought</subject><subject>Drought conditions</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Environmental stress</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genes, myb - genetics</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetically engineered foods</subject><subject>Genetically modified plants</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Localization</subject><subject>Moisture content</subject><subject>Molecular biology</subject><subject>MYB gene</subject><subject>Oncogene Proteins v-myb - genetics</subject><subject>Oryza - genetics</subject><subject>Plant biology</subject><subject>Plant genetics</subject><subject>Plant growth</subject><subject>Plant Proteins</subject><subject>Plant sciences</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Rice</subject><subject>Saccharum - genetics</subject><subject>Shortages</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>Sugarcane</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transformation</subject><subject>Transgenic plants</subject><subject>Water</subject><subject>Water content</subject><subject>Water resources</subject><subject>Water scarcity</subject><subject>Water stress</subject><subject>Water wells</subject><subject>Weight</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxazKZj82NsBY_FioLrgpehWzmZDYlMxmTzNL-Ev-uZ9tt6UovZBgSMs95z8k752TZc0anjNfs3bkfQ6_cdPA9TGlO65IXD7JjJng-qXLKH97ZH2VPYjyntOSzqnqcHXFashpVjrM_yy0EuBgCxGh9T7whK_3114f5ihHlEmCKZLdA4uCstn1LUlB91MEOKZLGGoPRfbLKuUtiu0FpPF5b36kYidJ67EaHAiis-oY0wY_tJpHkHaCMBmJ7EiyuV6ot9FaTwak-xafZI6NchGf79ST78enj99Mvk7Pl58Xp_GyiK5GnSUHN2tRNWWk-K3XZiJqytRazmSmYWLNCGF4JWrPczGpOBW-gUowDr4HqplaCn2Qvr3UH56Pcexplzko0i1e0RmJxTTRencsh2E6FS-mVlVcHPrRShWS1Awm04JizxBrqQmgqGBhdCKWgFHz3nmTv99nGdQeNRuuCcgeih196u5Gt38oqnzEmchR4sxcI_vcIMcnORg0OPQM_XtUtBKJ8V_erf9D7b7enWoUXsL3xmFfvROW8rIqC1RUvkZreQ-HTQGc1NqCxeH4Q8PYgAJkEF6lVY4xysfr2_-zy5yH7-g67AWzRTfRu3LVYPASLa1AHH2MAc2syo3I3PzduyN38yP38YNiLuz_oNuhmYPhfLw4YEQ</recordid><startdate>20181205</startdate><enddate>20181205</enddate><creator>Fávero Peixoto-Junior, Rafael</creator><creator>Mara de Andrade, Larissa</creator><creator>Dos Santos Brito, Michael</creator><creator>Macedo Nobile, Paula</creator><creator>Palma Boer Martins, Alexandre</creator><creator>Domingues Carlin, Samira</creator><creator>Vasconcelos Ribeiro, Rafael</creator><creator>de Souza Goldman, Maria Helena</creator><creator>Nebó Carlos de Oliveira, João Felipe</creator><creator>Vargas de Oliveira Figueira, Antonio</creator><creator>Creste, Silvana</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6459-8684</orcidid></search><sort><creationdate>20181205</creationdate><title>Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants</title><author>Fávero Peixoto-Junior, Rafael ; Mara de Andrade, Larissa ; Dos Santos Brito, Michael ; Macedo Nobile, Paula ; Palma Boer Martins, Alexandre ; Domingues Carlin, Samira ; Vasconcelos Ribeiro, Rafael ; de Souza Goldman, Maria Helena ; Nebó Carlos de Oliveira, João Felipe ; Vargas de Oliveira Figueira, Antonio ; Creste, Silvana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-40fbf7d56c385c5d9701bc988f419b149f3690712f873093de6a13e37e0cd7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abiotic stress</topic><topic>Accumulation</topic><topic>Agricultural production</topic><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Cell cycle</topic><topic>Crop yield</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>Drought</topic><topic>Drought conditions</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Environmental stress</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genes, myb - genetics</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetically engineered foods</topic><topic>Genetically modified plants</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Localization</topic><topic>Moisture content</topic><topic>Molecular biology</topic><topic>MYB gene</topic><topic>Oncogene Proteins v-myb - genetics</topic><topic>Oryza - genetics</topic><topic>Plant biology</topic><topic>Plant genetics</topic><topic>Plant growth</topic><topic>Plant Proteins</topic><topic>Plant sciences</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Rice</topic><topic>Saccharum - genetics</topic><topic>Shortages</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>Sugarcane</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transformation</topic><topic>Transgenic plants</topic><topic>Water</topic><topic>Water content</topic><topic>Water resources</topic><topic>Water scarcity</topic><topic>Water stress</topic><topic>Water wells</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fávero Peixoto-Junior, Rafael</creatorcontrib><creatorcontrib>Mara de Andrade, Larissa</creatorcontrib><creatorcontrib>Dos Santos Brito, Michael</creatorcontrib><creatorcontrib>Macedo Nobile, Paula</creatorcontrib><creatorcontrib>Palma Boer Martins, Alexandre</creatorcontrib><creatorcontrib>Domingues Carlin, Samira</creatorcontrib><creatorcontrib>Vasconcelos Ribeiro, Rafael</creatorcontrib><creatorcontrib>de Souza Goldman, Maria Helena</creatorcontrib><creatorcontrib>Nebó Carlos de Oliveira, João Felipe</creatorcontrib><creatorcontrib>Vargas de Oliveira Figueira, Antonio</creatorcontrib><creatorcontrib>Creste, Silvana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fávero Peixoto-Junior, Rafael</au><au>Mara de Andrade, Larissa</au><au>Dos Santos Brito, Michael</au><au>Macedo Nobile, Paula</au><au>Palma Boer Martins, Alexandre</au><au>Domingues Carlin, Samira</au><au>Vasconcelos Ribeiro, Rafael</au><au>de Souza Goldman, Maria Helena</au><au>Nebó Carlos de Oliveira, João Felipe</au><au>Vargas de Oliveira Figueira, Antonio</au><au>Creste, Silvana</au><au>Zhang, Jin-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-12-05</date><risdate>2018</risdate><volume>13</volume><issue>12</issue><spage>e0207534</spage><epage>e0207534</epage><pages>e0207534-e0207534</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Drought is the most significant environmental stress for agricultural production worldwide, and tremendous efforts have been made to improve crop yield under the increasing water scarcity. Transcription factors are major players in the regulation of water stress-related genes in plants. Recently, different MYB transcription factors were characterized for their involvement in drought response. A sugarcane R2R3-MYB gene (ScMYBAS1) and its four alternative forms of transcript (ScMYAS1-2, ScMYBAS1-3, ScMYBAS1-4 and ScMYBAS1-5) were identified in this study. The subcellular localization, in Nicotiniana benthamiana, of the TFs fused in frame with GFP revealed that ScMYBAS1-2-GFP and ScMYBAS1-3-GFP were observed in the nucleus. The overexpression of ScMYBAS1-2 and ScMYBAS1-3 spliced transcripts in rice promoted change in plant growth under both well-watered and drought conditions. The ScMYBAS1-2 and ScMYBAS1-3 transgenic lines revealed a higher relative water content (RWC) compared to the wild type before maximum stress under drought conditions. The ScMYBAS1-2 transgenic lines showed a reduction in biomass (total dry weight). Conversely, ScMYBAS1-3 showed an increased biomass (total dry weight) relative to the wild-type. The overexpression of ScMYBAS1-3 in rice transgenic lines showed involvement with drought tolerance and biomass and, for this reason, was considered a good target for plant transformation, particularly for use in developing genotypes with drought tolerance and biomass accumulation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30517137</pmid><doi>10.1371/journal.pone.0207534</doi><tpages>e0207534</tpages><orcidid>https://orcid.org/0000-0002-6459-8684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-12, Vol.13 (12), p.e0207534-e0207534 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2150533607 |
source | MEDLINE; Public Library of Science (PLoS); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abiotic stress Accumulation Agricultural production Alternative splicing Alternative Splicing - genetics Binding sites Biology and Life Sciences Biomass Cell cycle Crop yield Deoxyribonucleic acid DNA DNA binding proteins Drought Drought conditions Drought resistance Droughts Ecology and Environmental Sciences Engineering and Technology Environmental stress Gene expression Gene Expression Regulation, Plant - genetics Gene regulation Genes Genes, myb - genetics Genetic aspects Genetic engineering Genetically engineered foods Genetically modified plants Genomes Genotypes Localization Moisture content Molecular biology MYB gene Oncogene Proteins v-myb - genetics Oryza - genetics Plant biology Plant genetics Plant growth Plant Proteins Plant sciences Plants (botany) Plants, Genetically Modified - genetics Proteins Research and Analysis Methods Rice Saccharum - genetics Shortages Stress response Stress, Physiological - genetics Sugarcane Transcription (Genetics) Transcription factors Transcription Factors - genetics Transformation Transgenic plants Water Water content Water resources Water scarcity Water stress Water wells Weight |
title | Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20ScMYBAS1%20alternative%20splicing%20transcripts%20differentially%20impacts%20biomass%20accumulation%20and%20drought%20tolerance%20in%20rice%20transgenic%20plants&rft.jtitle=PloS%20one&rft.au=F%C3%A1vero%20Peixoto-Junior,%20Rafael&rft.date=2018-12-05&rft.volume=13&rft.issue=12&rft.spage=e0207534&rft.epage=e0207534&rft.pages=e0207534-e0207534&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0207534&rft_dat=%3Cgale_plos_%3EA564417635%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150533607&rft_id=info:pmid/30517137&rft_galeid=A564417635&rft_doaj_id=oai_doaj_org_article_e043149501b749c091efc49aae593e59&rfr_iscdi=true |