Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver

Explicit model predictive control (eMPC) has been proposed to reduce the huge computational complexity of MPC while maintaining the performance of MPC. Therefore, this control method has been more widely employed in the automotive industry than MPC. In this paper, an eMPC is designed to perform a do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-12, Vol.13 (12), p.e0208071-e0208071
Hauptverfasser: Lee, Junho, Chang, Hyuk-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0208071
container_issue 12
container_start_page e0208071
container_title PloS one
container_volume 13
creator Lee, Junho
Chang, Hyuk-Jun
description Explicit model predictive control (eMPC) has been proposed to reduce the huge computational complexity of MPC while maintaining the performance of MPC. Therefore, this control method has been more widely employed in the automotive industry than MPC. In this paper, an eMPC is designed to perform a double-lane-change (DLC) maneuver. This task has been employed to demonstrate the efficacy of controllers in an autonomous driving situation. In this sense, the proposed controller shows better performance than a driver model designed in CarSim at a high vehicle longitudinal velocity. The main contribution of this paper is to present an eMPC for discrete-time linear time-variant (LTV) systems so that the proposed controller can be robust against parameter variation. In a state-space representation of the vehicle, the longitudinal velocity of the vehicle is assumed to be a constant so that the whole system is linear time-invariant (LTI). However, it is inevitable that this velocity varies in an actual driving situation. Therefore, an eMPC controller is designed using an add-on unit to consider the varying parameter without modification of the eMPC solution. The CarSim simulation results of eMPC show enhanced performance compared to that of eMPC for the LTI system.
doi_str_mv 10.1371/journal.pone.0208071
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2149884565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A564306314</galeid><doaj_id>oai_doaj_org_article_8c43bcf1515a40b5b8bd5dc215e78618</doaj_id><sourcerecordid>A564306314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-68443c50cc28ac980e4b6d9a56e86ca8b62586d1f19bb808fe2fb2e144b7c2703</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkJpD97qw5LlSyCEtF0IBPp1FbI83lWQLUeSt8m_r911wrrkUHSQkJ55R3o1kySvMVphWuBP127wnbKr3nWwQgQJVOAnyTEuKck4QfTpwfooeRHCNUKMCs6fJ0cUMUyR4MfJzcVtb402MW1dDTbtPdRGR7ODVLsuemfTxvnUmg6UT6NpIdspb1QX03AXIrQh_W3iNlX9JKOicV0aXVq7obKQWdVBpreq20DajuthB_5l8qxRNsCreT5Jfn6--HH-Nbu8-rI-P7vMNC9JzLjIc6oZ0poIpUuBIK94XSrGQXCtRMUJE7zGDS6rSiDRAGkqAjjPq0KTAtGT5O1et7cuyNmtIAnOSyFyxtlIrPdE7dS17L1plb-TThn5d8P5jVQ-Gm1BCp3TSjeYYaZyVLFKVDWrNcEMCsGxGLVO52xD1UKtYfRO2YXo8qQzW7lxO8lJUSJKR4EPs4B3NwOEKFsTNNjJQjdM92aIkQLjCX33D_r462Zqo8YHmK5xY149icozxnOKOMX5SK0eocZRQ2vGCoDGjPuLgI-LgKlK4DZu1BCCXH__9v_s1a8l-_6A3YKycRucHaaKCksw34PauxA8NA8mYySnzrh3Q06dIefOGMPeHH7QQ9B9K9A_rDIKBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149884565</pqid></control><display><type>article</type><title>Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Junho ; Chang, Hyuk-Jun</creator><creatorcontrib>Lee, Junho ; Chang, Hyuk-Jun</creatorcontrib><description>Explicit model predictive control (eMPC) has been proposed to reduce the huge computational complexity of MPC while maintaining the performance of MPC. Therefore, this control method has been more widely employed in the automotive industry than MPC. In this paper, an eMPC is designed to perform a double-lane-change (DLC) maneuver. This task has been employed to demonstrate the efficacy of controllers in an autonomous driving situation. In this sense, the proposed controller shows better performance than a driver model designed in CarSim at a high vehicle longitudinal velocity. The main contribution of this paper is to present an eMPC for discrete-time linear time-variant (LTV) systems so that the proposed controller can be robust against parameter variation. In a state-space representation of the vehicle, the longitudinal velocity of the vehicle is assumed to be a constant so that the whole system is linear time-invariant (LTI). However, it is inevitable that this velocity varies in an actual driving situation. Therefore, an eMPC controller is designed using an add-on unit to consider the varying parameter without modification of the eMPC solution. The CarSim simulation results of eMPC show enhanced performance compared to that of eMPC for the LTI system.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0208071</identifier><identifier>PMID: 30513086</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Automation - methods ; Automobile Driving ; Automobile industry ; Automobiles ; Automotive industry ; Computer applications ; Computer Simulation ; Control algorithms ; Control systems design ; Control theory ; Controllers ; Discrete time systems ; Electric vehicles ; Embedded systems ; Energy efficiency ; Engineering and Technology ; Equipment Design ; Lane changing ; Linear Models ; Linear programming ; Mathematical models ; Parameter modification ; Parameter robustness ; Performance enhancement ; Physical Sciences ; Planning ; Predictive control ; Process controls ; Research and Analysis Methods ; Robust control ; Simulation ; Social Sciences ; Software ; State space models ; Technology application ; Time Factors ; Time varying control systems ; Velocity</subject><ispartof>PloS one, 2018-12, Vol.13 (12), p.e0208071-e0208071</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Lee, Chang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Lee, Chang 2018 Lee, Chang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-68443c50cc28ac980e4b6d9a56e86ca8b62586d1f19bb808fe2fb2e144b7c2703</citedby><cites>FETCH-LOGICAL-c692t-68443c50cc28ac980e4b6d9a56e86ca8b62586d1f19bb808fe2fb2e144b7c2703</cites><orcidid>0000-0001-7781-2961 ; 0000-0001-8969-1714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30513086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Junho</creatorcontrib><creatorcontrib>Chang, Hyuk-Jun</creatorcontrib><title>Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Explicit model predictive control (eMPC) has been proposed to reduce the huge computational complexity of MPC while maintaining the performance of MPC. Therefore, this control method has been more widely employed in the automotive industry than MPC. In this paper, an eMPC is designed to perform a double-lane-change (DLC) maneuver. This task has been employed to demonstrate the efficacy of controllers in an autonomous driving situation. In this sense, the proposed controller shows better performance than a driver model designed in CarSim at a high vehicle longitudinal velocity. The main contribution of this paper is to present an eMPC for discrete-time linear time-variant (LTV) systems so that the proposed controller can be robust against parameter variation. In a state-space representation of the vehicle, the longitudinal velocity of the vehicle is assumed to be a constant so that the whole system is linear time-invariant (LTI). However, it is inevitable that this velocity varies in an actual driving situation. Therefore, an eMPC controller is designed using an add-on unit to consider the varying parameter without modification of the eMPC solution. The CarSim simulation results of eMPC show enhanced performance compared to that of eMPC for the LTI system.</description><subject>Algorithms</subject><subject>Automation - methods</subject><subject>Automobile Driving</subject><subject>Automobile industry</subject><subject>Automobiles</subject><subject>Automotive industry</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Discrete time systems</subject><subject>Electric vehicles</subject><subject>Embedded systems</subject><subject>Energy efficiency</subject><subject>Engineering and Technology</subject><subject>Equipment Design</subject><subject>Lane changing</subject><subject>Linear Models</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Parameter modification</subject><subject>Parameter robustness</subject><subject>Performance enhancement</subject><subject>Physical Sciences</subject><subject>Planning</subject><subject>Predictive control</subject><subject>Process controls</subject><subject>Research and Analysis Methods</subject><subject>Robust control</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Software</subject><subject>State space models</subject><subject>Technology application</subject><subject>Time Factors</subject><subject>Time varying control systems</subject><subject>Velocity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkJpD97qw5LlSyCEtF0IBPp1FbI83lWQLUeSt8m_r911wrrkUHSQkJ55R3o1kySvMVphWuBP127wnbKr3nWwQgQJVOAnyTEuKck4QfTpwfooeRHCNUKMCs6fJ0cUMUyR4MfJzcVtb402MW1dDTbtPdRGR7ODVLsuemfTxvnUmg6UT6NpIdspb1QX03AXIrQh_W3iNlX9JKOicV0aXVq7obKQWdVBpreq20DajuthB_5l8qxRNsCreT5Jfn6--HH-Nbu8-rI-P7vMNC9JzLjIc6oZ0poIpUuBIK94XSrGQXCtRMUJE7zGDS6rSiDRAGkqAjjPq0KTAtGT5O1et7cuyNmtIAnOSyFyxtlIrPdE7dS17L1plb-TThn5d8P5jVQ-Gm1BCp3TSjeYYaZyVLFKVDWrNcEMCsGxGLVO52xD1UKtYfRO2YXo8qQzW7lxO8lJUSJKR4EPs4B3NwOEKFsTNNjJQjdM92aIkQLjCX33D_r462Zqo8YHmK5xY149icozxnOKOMX5SK0eocZRQ2vGCoDGjPuLgI-LgKlK4DZu1BCCXH__9v_s1a8l-_6A3YKycRucHaaKCksw34PauxA8NA8mYySnzrh3Q06dIefOGMPeHH7QQ9B9K9A_rDIKBw</recordid><startdate>20181204</startdate><enddate>20181204</enddate><creator>Lee, Junho</creator><creator>Chang, Hyuk-Jun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7781-2961</orcidid><orcidid>https://orcid.org/0000-0001-8969-1714</orcidid></search><sort><creationdate>20181204</creationdate><title>Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver</title><author>Lee, Junho ; Chang, Hyuk-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-68443c50cc28ac980e4b6d9a56e86ca8b62586d1f19bb808fe2fb2e144b7c2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Automation - methods</topic><topic>Automobile Driving</topic><topic>Automobile industry</topic><topic>Automobiles</topic><topic>Automotive industry</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Discrete time systems</topic><topic>Electric vehicles</topic><topic>Embedded systems</topic><topic>Energy efficiency</topic><topic>Engineering and Technology</topic><topic>Equipment Design</topic><topic>Lane changing</topic><topic>Linear Models</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Parameter modification</topic><topic>Parameter robustness</topic><topic>Performance enhancement</topic><topic>Physical Sciences</topic><topic>Planning</topic><topic>Predictive control</topic><topic>Process controls</topic><topic>Research and Analysis Methods</topic><topic>Robust control</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Software</topic><topic>State space models</topic><topic>Technology application</topic><topic>Time Factors</topic><topic>Time varying control systems</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Junho</creatorcontrib><creatorcontrib>Chang, Hyuk-Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Junho</au><au>Chang, Hyuk-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-12-04</date><risdate>2018</risdate><volume>13</volume><issue>12</issue><spage>e0208071</spage><epage>e0208071</epage><pages>e0208071-e0208071</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Explicit model predictive control (eMPC) has been proposed to reduce the huge computational complexity of MPC while maintaining the performance of MPC. Therefore, this control method has been more widely employed in the automotive industry than MPC. In this paper, an eMPC is designed to perform a double-lane-change (DLC) maneuver. This task has been employed to demonstrate the efficacy of controllers in an autonomous driving situation. In this sense, the proposed controller shows better performance than a driver model designed in CarSim at a high vehicle longitudinal velocity. The main contribution of this paper is to present an eMPC for discrete-time linear time-variant (LTV) systems so that the proposed controller can be robust against parameter variation. In a state-space representation of the vehicle, the longitudinal velocity of the vehicle is assumed to be a constant so that the whole system is linear time-invariant (LTI). However, it is inevitable that this velocity varies in an actual driving situation. Therefore, an eMPC controller is designed using an add-on unit to consider the varying parameter without modification of the eMPC solution. The CarSim simulation results of eMPC show enhanced performance compared to that of eMPC for the LTI system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30513086</pmid><doi>10.1371/journal.pone.0208071</doi><tpages>e0208071</tpages><orcidid>https://orcid.org/0000-0001-7781-2961</orcidid><orcidid>https://orcid.org/0000-0001-8969-1714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-12, Vol.13 (12), p.e0208071-e0208071
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2149884565
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Automation - methods
Automobile Driving
Automobile industry
Automobiles
Automotive industry
Computer applications
Computer Simulation
Control algorithms
Control systems design
Control theory
Controllers
Discrete time systems
Electric vehicles
Embedded systems
Energy efficiency
Engineering and Technology
Equipment Design
Lane changing
Linear Models
Linear programming
Mathematical models
Parameter modification
Parameter robustness
Performance enhancement
Physical Sciences
Planning
Predictive control
Process controls
Research and Analysis Methods
Robust control
Simulation
Social Sciences
Software
State space models
Technology application
Time Factors
Time varying control systems
Velocity
title Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20model%20predictive%20control%20for%20linear%20time-variant%20systems%20with%20application%20to%20double-lane-change%20maneuver&rft.jtitle=PloS%20one&rft.au=Lee,%20Junho&rft.date=2018-12-04&rft.volume=13&rft.issue=12&rft.spage=e0208071&rft.epage=e0208071&rft.pages=e0208071-e0208071&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0208071&rft_dat=%3Cgale_plos_%3EA564306314%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149884565&rft_id=info:pmid/30513086&rft_galeid=A564306314&rft_doaj_id=oai_doaj_org_article_8c43bcf1515a40b5b8bd5dc215e78618&rfr_iscdi=true