A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal

Biological invasions are one of the major causes of biodiversity loss worldwide. In spite of human aided (anthropogenic) dispersal being the key element in the spread of invasive species, no framework published so far accounts for its peculiar characteristics, such as very rapid dispersal and indepe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-11, Vol.13 (11), p.e0205591-e0205591
Hauptverfasser: Butikofer, Luca, Jones, Beatrix, Sacchi, Roberto, Mangiacotti, Marco, Ji, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0205591
container_issue 11
container_start_page e0205591
container_title PloS one
container_volume 13
creator Butikofer, Luca
Jones, Beatrix
Sacchi, Roberto
Mangiacotti, Marco
Ji, Weihong
description Biological invasions are one of the major causes of biodiversity loss worldwide. In spite of human aided (anthropogenic) dispersal being the key element in the spread of invasive species, no framework published so far accounts for its peculiar characteristics, such as very rapid dispersal and independence from the existing species distribution. We present a new method for modelling biological invasions using historical spatio-temporal records. This method first discriminates between data points of anthropogenic origin and those originating from natural dispersal, then estimates the natural dispersal kernel. We use the expectation-maximisation algorithm for the first step; we then use Ripley's K-function as a spatial similarity metric to estimate the dispersal kernel. This is done accounting for habitat suitability and providing estimates of the inference precision. Tests on simulated data show good accuracy and precision for this method, even in the presence of challenging, but realistic, limitations of data in the invasion time series, such as gaps in the survey times and low number of records. We also provide a real case application of our method using the case of Litoria frogs in New Zealand. This method is widely applicable across the field of biological invasions, epidemics and climate change induced range shifts and provides a valuable contribution to the management of such issues. Functions to implement this methodology are made available as the R package Biolinv (https://cran.r-project.org/package=Biolinv).
doi_str_mv 10.1371/journal.pone.0205591
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2138603973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A563518569</galeid><doaj_id>oai_doaj_org_article_6b35020d74414d8fa3add812e8d0e3a4</doaj_id><sourcerecordid>A563518569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3fb9a70028ae3adab78ee965efa6e20ef7ebd6f38c5d731811b216c69426c6ee3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDgujDjEnT64swLF4GFha8vYbT5rSTJU3GJF3db2_qdJep7IMU2pD-_v9zSU6SPGd0zXjJ3l3Z0RnQ6701uKYpzfOaPUhOWc3TVZFS_vBofZI88f6K0pxXRfE4OeE0qxgrs9Nk2BCDv8iAYWcl6awjg5WotTI9aZTVtlctaKLMNXhljSedswNBcPqG-L1DkERCAAJta0cTJtlkAibsnN3bHo1qiVR-j86Dfpo86kB7fDZ_z5LvHz98O_-8urj8tD3fXKzaok7DindNDSWlaQXIQUJTVoh1kWMHBaYUuxIbWXS8anNZchZLaVJWRG2WxjciP0teHnz32noxd8qLlMX6Ka9LHontgZAWrsTeqQHcjbCgxN8N63oBLqhWoygansf-yjLLWCarDmJKsmIpVpLG9LLo9X6ONjYDyhZNcKAXpss_Ru1Eb69FkeZVzqZk3swGzv4c0QcxKN_GUwCDdpzzzuLpTbFe_YPeX91M9RALUKazMW47mYpNXvCcVXlRR2p9DxUfiYNq47XqVNxfCN4uBJEJ-Dv0MHovtl-__D97-WPJvj5idwg67LzVY5hu3BLMDmDrrPcOu7smMyqmqbjthpimQsxTEWUvjg_oTnQ7BvwPswsJOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138603973</pqid></control><display><type>article</type><title>A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Butikofer, Luca ; Jones, Beatrix ; Sacchi, Roberto ; Mangiacotti, Marco ; Ji, Weihong</creator><creatorcontrib>Butikofer, Luca ; Jones, Beatrix ; Sacchi, Roberto ; Mangiacotti, Marco ; Ji, Weihong</creatorcontrib><description>Biological invasions are one of the major causes of biodiversity loss worldwide. In spite of human aided (anthropogenic) dispersal being the key element in the spread of invasive species, no framework published so far accounts for its peculiar characteristics, such as very rapid dispersal and independence from the existing species distribution. We present a new method for modelling biological invasions using historical spatio-temporal records. This method first discriminates between data points of anthropogenic origin and those originating from natural dispersal, then estimates the natural dispersal kernel. We use the expectation-maximisation algorithm for the first step; we then use Ripley's K-function as a spatial similarity metric to estimate the dispersal kernel. This is done accounting for habitat suitability and providing estimates of the inference precision. Tests on simulated data show good accuracy and precision for this method, even in the presence of challenging, but realistic, limitations of data in the invasion time series, such as gaps in the survey times and low number of records. We also provide a real case application of our method using the case of Litoria frogs in New Zealand. This method is widely applicable across the field of biological invasions, epidemics and climate change induced range shifts and provides a valuable contribution to the management of such issues. Functions to implement this methodology are made available as the R package Biolinv (https://cran.r-project.org/package=Biolinv).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0205591</identifier><identifier>PMID: 30481174</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Anthropogenic factors ; Biodiversity ; Biodiversity loss ; Biological invasions ; Biology and Life Sciences ; Climate Change ; Climatic changes ; Computer simulation ; Data points ; Data processing ; Datasets ; Dispersal ; Dispersion ; Earth Sciences ; Ecology and Environmental Sciences ; Ecosystem ; Environmental science ; Epidemics ; Frogs ; Human Activities ; Humans ; Internet ; Introduced Species ; Invasions ; Invasive species ; Laboratories ; Methods ; Modelling ; Models, Biological ; New records ; New Zealand ; People and places ; Physical Sciences ; Population Dynamics ; Research and Analysis Methods ; Social Sciences ; Time series</subject><ispartof>PloS one, 2018-11, Vol.13 (11), p.e0205591-e0205591</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Butikofer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Butikofer et al 2018 Butikofer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3fb9a70028ae3adab78ee965efa6e20ef7ebd6f38c5d731811b216c69426c6ee3</citedby><cites>FETCH-LOGICAL-c692t-3fb9a70028ae3adab78ee965efa6e20ef7ebd6f38c5d731811b216c69426c6ee3</cites><orcidid>0000-0001-8220-7520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30481174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Butikofer, Luca</creatorcontrib><creatorcontrib>Jones, Beatrix</creatorcontrib><creatorcontrib>Sacchi, Roberto</creatorcontrib><creatorcontrib>Mangiacotti, Marco</creatorcontrib><creatorcontrib>Ji, Weihong</creatorcontrib><title>A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biological invasions are one of the major causes of biodiversity loss worldwide. In spite of human aided (anthropogenic) dispersal being the key element in the spread of invasive species, no framework published so far accounts for its peculiar characteristics, such as very rapid dispersal and independence from the existing species distribution. We present a new method for modelling biological invasions using historical spatio-temporal records. This method first discriminates between data points of anthropogenic origin and those originating from natural dispersal, then estimates the natural dispersal kernel. We use the expectation-maximisation algorithm for the first step; we then use Ripley's K-function as a spatial similarity metric to estimate the dispersal kernel. This is done accounting for habitat suitability and providing estimates of the inference precision. Tests on simulated data show good accuracy and precision for this method, even in the presence of challenging, but realistic, limitations of data in the invasion time series, such as gaps in the survey times and low number of records. We also provide a real case application of our method using the case of Litoria frogs in New Zealand. This method is widely applicable across the field of biological invasions, epidemics and climate change induced range shifts and provides a valuable contribution to the management of such issues. Functions to implement this methodology are made available as the R package Biolinv (https://cran.r-project.org/package=Biolinv).</description><subject>Analysis</subject><subject>Anthropogenic factors</subject><subject>Biodiversity</subject><subject>Biodiversity loss</subject><subject>Biological invasions</subject><subject>Biology and Life Sciences</subject><subject>Climate Change</subject><subject>Climatic changes</subject><subject>Computer simulation</subject><subject>Data points</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Environmental science</subject><subject>Epidemics</subject><subject>Frogs</subject><subject>Human Activities</subject><subject>Humans</subject><subject>Internet</subject><subject>Introduced Species</subject><subject>Invasions</subject><subject>Invasive species</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>New records</subject><subject>New Zealand</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Population Dynamics</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Time series</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDgujDjEnT64swLF4GFha8vYbT5rSTJU3GJF3db2_qdJep7IMU2pD-_v9zSU6SPGd0zXjJ3l3Z0RnQ6701uKYpzfOaPUhOWc3TVZFS_vBofZI88f6K0pxXRfE4OeE0qxgrs9Nk2BCDv8iAYWcl6awjg5WotTI9aZTVtlctaKLMNXhljSedswNBcPqG-L1DkERCAAJta0cTJtlkAibsnN3bHo1qiVR-j86Dfpo86kB7fDZ_z5LvHz98O_-8urj8tD3fXKzaok7DindNDSWlaQXIQUJTVoh1kWMHBaYUuxIbWXS8anNZchZLaVJWRG2WxjciP0teHnz32noxd8qLlMX6Ka9LHontgZAWrsTeqQHcjbCgxN8N63oBLqhWoygansf-yjLLWCarDmJKsmIpVpLG9LLo9X6ONjYDyhZNcKAXpss_Ru1Eb69FkeZVzqZk3swGzv4c0QcxKN_GUwCDdpzzzuLpTbFe_YPeX91M9RALUKazMW47mYpNXvCcVXlRR2p9DxUfiYNq47XqVNxfCN4uBJEJ-Dv0MHovtl-__D97-WPJvj5idwg67LzVY5hu3BLMDmDrrPcOu7smMyqmqbjthpimQsxTEWUvjg_oTnQ7BvwPswsJOw</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Butikofer, Luca</creator><creator>Jones, Beatrix</creator><creator>Sacchi, Roberto</creator><creator>Mangiacotti, Marco</creator><creator>Ji, Weihong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8220-7520</orcidid></search><sort><creationdate>20181127</creationdate><title>A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal</title><author>Butikofer, Luca ; Jones, Beatrix ; Sacchi, Roberto ; Mangiacotti, Marco ; Ji, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3fb9a70028ae3adab78ee965efa6e20ef7ebd6f38c5d731811b216c69426c6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Anthropogenic factors</topic><topic>Biodiversity</topic><topic>Biodiversity loss</topic><topic>Biological invasions</topic><topic>Biology and Life Sciences</topic><topic>Climate Change</topic><topic>Climatic changes</topic><topic>Computer simulation</topic><topic>Data points</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Environmental science</topic><topic>Epidemics</topic><topic>Frogs</topic><topic>Human Activities</topic><topic>Humans</topic><topic>Internet</topic><topic>Introduced Species</topic><topic>Invasions</topic><topic>Invasive species</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>New records</topic><topic>New Zealand</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Population Dynamics</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butikofer, Luca</creatorcontrib><creatorcontrib>Jones, Beatrix</creatorcontrib><creatorcontrib>Sacchi, Roberto</creatorcontrib><creatorcontrib>Mangiacotti, Marco</creatorcontrib><creatorcontrib>Ji, Weihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butikofer, Luca</au><au>Jones, Beatrix</au><au>Sacchi, Roberto</au><au>Mangiacotti, Marco</au><au>Ji, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-11-27</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>e0205591</spage><epage>e0205591</epage><pages>e0205591-e0205591</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biological invasions are one of the major causes of biodiversity loss worldwide. In spite of human aided (anthropogenic) dispersal being the key element in the spread of invasive species, no framework published so far accounts for its peculiar characteristics, such as very rapid dispersal and independence from the existing species distribution. We present a new method for modelling biological invasions using historical spatio-temporal records. This method first discriminates between data points of anthropogenic origin and those originating from natural dispersal, then estimates the natural dispersal kernel. We use the expectation-maximisation algorithm for the first step; we then use Ripley's K-function as a spatial similarity metric to estimate the dispersal kernel. This is done accounting for habitat suitability and providing estimates of the inference precision. Tests on simulated data show good accuracy and precision for this method, even in the presence of challenging, but realistic, limitations of data in the invasion time series, such as gaps in the survey times and low number of records. We also provide a real case application of our method using the case of Litoria frogs in New Zealand. This method is widely applicable across the field of biological invasions, epidemics and climate change induced range shifts and provides a valuable contribution to the management of such issues. Functions to implement this methodology are made available as the R package Biolinv (https://cran.r-project.org/package=Biolinv).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30481174</pmid><doi>10.1371/journal.pone.0205591</doi><tpages>e0205591</tpages><orcidid>https://orcid.org/0000-0001-8220-7520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-11, Vol.13 (11), p.e0205591-e0205591
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2138603973
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Anthropogenic factors
Biodiversity
Biodiversity loss
Biological invasions
Biology and Life Sciences
Climate Change
Climatic changes
Computer simulation
Data points
Data processing
Datasets
Dispersal
Dispersion
Earth Sciences
Ecology and Environmental Sciences
Ecosystem
Environmental science
Epidemics
Frogs
Human Activities
Humans
Internet
Introduced Species
Invasions
Invasive species
Laboratories
Methods
Modelling
Models, Biological
New records
New Zealand
People and places
Physical Sciences
Population Dynamics
Research and Analysis Methods
Social Sciences
Time series
title A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20modelling%20biological%20invasions%20from%20early%20spread%20data%20accounting%20for%20anthropogenic%20dispersal&rft.jtitle=PloS%20one&rft.au=Butikofer,%20Luca&rft.date=2018-11-27&rft.volume=13&rft.issue=11&rft.spage=e0205591&rft.epage=e0205591&rft.pages=e0205591-e0205591&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0205591&rft_dat=%3Cgale_plos_%3EA563518569%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138603973&rft_id=info:pmid/30481174&rft_galeid=A563518569&rft_doaj_id=oai_doaj_org_article_6b35020d74414d8fa3add812e8d0e3a4&rfr_iscdi=true