Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases

Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-11, Vol.13 (11), p.e0207062-e0207062
Hauptverfasser: Stone, Christine L, Frederick, Reid D, Tooley, Paul W, Luster, Douglas G, Campos, Brittany, Winegar, Richard A, Melcher, Ulrich, Fletcher, Jacqueline, Blagden, Trenna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0207062
container_issue 11
container_start_page e0207062
container_title PloS one
container_volume 13
creator Stone, Christine L
Frederick, Reid D
Tooley, Paul W
Luster, Douglas G
Campos, Brittany
Winegar, Richard A
Melcher, Ulrich
Fletcher, Jacqueline
Blagden, Trenna
description Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.
doi_str_mv 10.1371/journal.pone.0207062
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2130794196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7cf6f0e71e242df81cd58cd655978cf</doaj_id><sourcerecordid>2131241313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-6d484656f26f2d1159bb238c6651b2d2cd64e361c346da4d77fd459491c8d94b3</originalsourceid><addsrcrecordid>eNqFks9q3DAQxk1padK0b1BaQS89ZLf6Z9m-BMLSNoFAL-1ZyJK81iJrtpId8Av1OStnNyEJhYJtiZnffPN5mKJ4T_CasIp82cEUg_LrPQS7xhRXWNAXxSlpGF0JitnLR_eT4k1KO4xLVgvxujhhmGNWcXJa_LkMAUY1OghIBZNf5efkEoIOjb1FgxtB9xBMdMqjrQ0w2CW3geBg7OfopgFt_axdsOkcaTWlzKkMjgsWrUHeqg61HkbdL6EEc2tVOM-5W6t8yi2RaqdgVNB30j0MLmyRDQbCpHN1sult8arLrH13PM-KX9--_txcrW5-fL_eXN6sdFk240oYXnNRio7mxxBSNm1LWa2FKElLDdVGcMsE0YwLo7ipqs7wsuEN0bVpeMvOio8H3b2HJI8jTpIShquGk0Zk4vpAGFA7uY9uUHGWoJy8C0DcShVHl31LXelOdNhWxFJOTVcTbco6e8heq1p3Wevi2G1qB2t0HlpU_ono00xwvdzCrRQ0OypxFvh8FIjwe7JplINL2nqvgoUp-y5zYyIEZ_9HCSOU58-CfnqG_nsQ_EDpCClF2z34JlguG3pfJZcNlccNzWUfHv_zQ9H9SrK_LN_m6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130794196</pqid></control><display><type>article</type><title>Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Stone, Christine L ; Frederick, Reid D ; Tooley, Paul W ; Luster, Douglas G ; Campos, Brittany ; Winegar, Richard A ; Melcher, Ulrich ; Fletcher, Jacqueline ; Blagden, Trenna</creator><creatorcontrib>Stone, Christine L ; Frederick, Reid D ; Tooley, Paul W ; Luster, Douglas G ; Campos, Brittany ; Winegar, Richard A ; Melcher, Ulrich ; Fletcher, Jacqueline ; Blagden, Trenna</creatorcontrib><description>Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0207062</identifier><identifier>PMID: 30403741</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Annotations ; Ascomycota - genetics ; Ascomycota - physiology ; Biology and Life Sciences ; Cluster analysis ; Codon - genetics ; Coniothyrium ; Coniothyrium glycines ; Conservation ; COX2 protein ; Deoxyribonucleic acid ; Diagnostic systems ; Disease ; DNA ; Endonuclease ; Endonucleases - genetics ; Endonucleases - metabolism ; Forensic sciences ; Fungi ; Gene order ; Gene sequencing ; Genes ; Genome, Mitochondrial - genetics ; Genomes ; Genomics ; Glycine max ; Glycine max - microbiology ; Homing endonuclease ; Introns ; Introns - genetics ; Leaf blotch ; Mitochondria ; Mitochondrial DNA ; mitochondrial genome ; Molecular Sequence Annotation ; Morphology ; Oxidative phosphorylation ; Phosphorylation ; Phylogenetics ; Phylogeny ; Physical Sciences ; Plant Diseases - microbiology ; Plant mitochondria ; plant pathogens ; Plant pathology ; Pleosporales ; Population studies ; Proteins ; ribosomal proteins ; RNA, Transfer - genetics ; Soybeans ; Surveillance ; Taxonomy ; tRNA ; USDA</subject><ispartof>PloS one, 2018-11, Vol.13 (11), p.e0207062-e0207062</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-6d484656f26f2d1159bb238c6651b2d2cd64e361c346da4d77fd459491c8d94b3</citedby><cites>FETCH-LOGICAL-c559t-6d484656f26f2d1159bb238c6651b2d2cd64e361c346da4d77fd459491c8d94b3</cites><orcidid>0000-0002-1672-5327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30403741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone, Christine L</creatorcontrib><creatorcontrib>Frederick, Reid D</creatorcontrib><creatorcontrib>Tooley, Paul W</creatorcontrib><creatorcontrib>Luster, Douglas G</creatorcontrib><creatorcontrib>Campos, Brittany</creatorcontrib><creatorcontrib>Winegar, Richard A</creatorcontrib><creatorcontrib>Melcher, Ulrich</creatorcontrib><creatorcontrib>Fletcher, Jacqueline</creatorcontrib><creatorcontrib>Blagden, Trenna</creatorcontrib><title>Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.</description><subject>Agriculture</subject><subject>Annotations</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - physiology</subject><subject>Biology and Life Sciences</subject><subject>Cluster analysis</subject><subject>Codon - genetics</subject><subject>Coniothyrium</subject><subject>Coniothyrium glycines</subject><subject>Conservation</subject><subject>COX2 protein</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic systems</subject><subject>Disease</subject><subject>DNA</subject><subject>Endonuclease</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Forensic sciences</subject><subject>Fungi</subject><subject>Gene order</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genome, Mitochondrial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycine max</subject><subject>Glycine max - microbiology</subject><subject>Homing endonuclease</subject><subject>Introns</subject><subject>Introns - genetics</subject><subject>Leaf blotch</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial genome</subject><subject>Molecular Sequence Annotation</subject><subject>Morphology</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Plant Diseases - microbiology</subject><subject>Plant mitochondria</subject><subject>plant pathogens</subject><subject>Plant pathology</subject><subject>Pleosporales</subject><subject>Population studies</subject><subject>Proteins</subject><subject>ribosomal proteins</subject><subject>RNA, Transfer - genetics</subject><subject>Soybeans</subject><subject>Surveillance</subject><subject>Taxonomy</subject><subject>tRNA</subject><subject>USDA</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFks9q3DAQxk1padK0b1BaQS89ZLf6Z9m-BMLSNoFAL-1ZyJK81iJrtpId8Av1OStnNyEJhYJtiZnffPN5mKJ4T_CasIp82cEUg_LrPQS7xhRXWNAXxSlpGF0JitnLR_eT4k1KO4xLVgvxujhhmGNWcXJa_LkMAUY1OghIBZNf5efkEoIOjb1FgxtB9xBMdMqjrQ0w2CW3geBg7OfopgFt_axdsOkcaTWlzKkMjgsWrUHeqg61HkbdL6EEc2tVOM-5W6t8yi2RaqdgVNB30j0MLmyRDQbCpHN1sult8arLrH13PM-KX9--_txcrW5-fL_eXN6sdFk240oYXnNRio7mxxBSNm1LWa2FKElLDdVGcMsE0YwLo7ipqs7wsuEN0bVpeMvOio8H3b2HJI8jTpIShquGk0Zk4vpAGFA7uY9uUHGWoJy8C0DcShVHl31LXelOdNhWxFJOTVcTbco6e8heq1p3Wevi2G1qB2t0HlpU_ono00xwvdzCrRQ0OypxFvh8FIjwe7JplINL2nqvgoUp-y5zYyIEZ_9HCSOU58-CfnqG_nsQ_EDpCClF2z34JlguG3pfJZcNlccNzWUfHv_zQ9H9SrK_LN_m6w</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Stone, Christine L</creator><creator>Frederick, Reid D</creator><creator>Tooley, Paul W</creator><creator>Luster, Douglas G</creator><creator>Campos, Brittany</creator><creator>Winegar, Richard A</creator><creator>Melcher, Ulrich</creator><creator>Fletcher, Jacqueline</creator><creator>Blagden, Trenna</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1672-5327</orcidid></search><sort><creationdate>20181107</creationdate><title>Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases</title><author>Stone, Christine L ; Frederick, Reid D ; Tooley, Paul W ; Luster, Douglas G ; Campos, Brittany ; Winegar, Richard A ; Melcher, Ulrich ; Fletcher, Jacqueline ; Blagden, Trenna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-6d484656f26f2d1159bb238c6651b2d2cd64e361c346da4d77fd459491c8d94b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Annotations</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - physiology</topic><topic>Biology and Life Sciences</topic><topic>Cluster analysis</topic><topic>Codon - genetics</topic><topic>Coniothyrium</topic><topic>Coniothyrium glycines</topic><topic>Conservation</topic><topic>COX2 protein</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic systems</topic><topic>Disease</topic><topic>DNA</topic><topic>Endonuclease</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Forensic sciences</topic><topic>Fungi</topic><topic>Gene order</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genome, Mitochondrial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycine max</topic><topic>Glycine max - microbiology</topic><topic>Homing endonuclease</topic><topic>Introns</topic><topic>Introns - genetics</topic><topic>Leaf blotch</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial genome</topic><topic>Molecular Sequence Annotation</topic><topic>Morphology</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Plant Diseases - microbiology</topic><topic>Plant mitochondria</topic><topic>plant pathogens</topic><topic>Plant pathology</topic><topic>Pleosporales</topic><topic>Population studies</topic><topic>Proteins</topic><topic>ribosomal proteins</topic><topic>RNA, Transfer - genetics</topic><topic>Soybeans</topic><topic>Surveillance</topic><topic>Taxonomy</topic><topic>tRNA</topic><topic>USDA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone, Christine L</creatorcontrib><creatorcontrib>Frederick, Reid D</creatorcontrib><creatorcontrib>Tooley, Paul W</creatorcontrib><creatorcontrib>Luster, Douglas G</creatorcontrib><creatorcontrib>Campos, Brittany</creatorcontrib><creatorcontrib>Winegar, Richard A</creatorcontrib><creatorcontrib>Melcher, Ulrich</creatorcontrib><creatorcontrib>Fletcher, Jacqueline</creatorcontrib><creatorcontrib>Blagden, Trenna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone, Christine L</au><au>Frederick, Reid D</au><au>Tooley, Paul W</au><au>Luster, Douglas G</au><au>Campos, Brittany</au><au>Winegar, Richard A</au><au>Melcher, Ulrich</au><au>Fletcher, Jacqueline</au><au>Blagden, Trenna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>e0207062</spage><epage>e0207062</epage><pages>e0207062-e0207062</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30403741</pmid><doi>10.1371/journal.pone.0207062</doi><orcidid>https://orcid.org/0000-0002-1672-5327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-11, Vol.13 (11), p.e0207062-e0207062
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2130794196
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agriculture
Annotations
Ascomycota - genetics
Ascomycota - physiology
Biology and Life Sciences
Cluster analysis
Codon - genetics
Coniothyrium
Coniothyrium glycines
Conservation
COX2 protein
Deoxyribonucleic acid
Diagnostic systems
Disease
DNA
Endonuclease
Endonucleases - genetics
Endonucleases - metabolism
Forensic sciences
Fungi
Gene order
Gene sequencing
Genes
Genome, Mitochondrial - genetics
Genomes
Genomics
Glycine max
Glycine max - microbiology
Homing endonuclease
Introns
Introns - genetics
Leaf blotch
Mitochondria
Mitochondrial DNA
mitochondrial genome
Molecular Sequence Annotation
Morphology
Oxidative phosphorylation
Phosphorylation
Phylogenetics
Phylogeny
Physical Sciences
Plant Diseases - microbiology
Plant mitochondria
plant pathogens
Plant pathology
Pleosporales
Population studies
Proteins
ribosomal proteins
RNA, Transfer - genetics
Soybeans
Surveillance
Taxonomy
tRNA
USDA
title Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Annotation%20and%20analysis%20of%20the%20mitochondrial%20genome%20of%20Coniothyrium%20glycines,%20causal%20agent%20of%20red%20leaf%20blotch%20of%20soybean,%20reveals%20an%20abundance%20of%20homing%20endonucleases&rft.jtitle=PloS%20one&rft.au=Stone,%20Christine%20L&rft.date=2018-11-07&rft.volume=13&rft.issue=11&rft.spage=e0207062&rft.epage=e0207062&rft.pages=e0207062-e0207062&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0207062&rft_dat=%3Cproquest_plos_%3E2131241313%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130794196&rft_id=info:pmid/30403741&rft_doaj_id=oai_doaj_org_article_c7cf6f0e71e242df81cd58cd655978cf&rfr_iscdi=true