Improved linear classifier model with Nyström

Most data sets consist of interlaced-distributed samples from multiple classes and since these samples always cannot be classified correctly by a linear hyperplane, so we name them nonlinearly separable data sets and corresponding classifiers are named nonlinear classifiers. Traditional nonlinear cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-11, Vol.13 (11), p.e0206798-e0206798
Hauptverfasser: Zhu, Changming, Ji, Xiang, Chen, Chao, Zhou, Rigui, Wei, Lai, Zhang, Xiafen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0206798
container_issue 11
container_start_page e0206798
container_title PloS one
container_volume 13
creator Zhu, Changming
Ji, Xiang
Chen, Chao
Zhou, Rigui
Wei, Lai
Zhang, Xiafen
description Most data sets consist of interlaced-distributed samples from multiple classes and since these samples always cannot be classified correctly by a linear hyperplane, so we name them nonlinearly separable data sets and corresponding classifiers are named nonlinear classifiers. Traditional nonlinear classifiers adopt kernel functions to generate kernel matrices and then get optimal classifier parameters with the solution of these matrices. But computing and storing kernel matrices brings high computational and space complexities. Since INMKMHKS adopts Nyström approximation technique and NysCK changes nonlinearly separable data to linearly ones so as to reduce the complexities, we combines ideas of them to develop an improved NysCK (INysCK). Moreover, we extend INysCK into multi-view applications and propose multi-view INysCK (MINysCK). Related experiments validate the effectiveness of them in terms of accuracy, convergence, Rademacher complexity, etc.
doi_str_mv 10.1371/journal.pone.0206798
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2130051131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63a3da7e438c4078a363788773ea0a2e</doaj_id><sourcerecordid>2130302307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-b1f2e6e6b9440d0f74c1a69683d72d32f3e975c52a665002fb4bd11960197c9d3</originalsourceid><addsrcrecordid>eNptkcFu1DAURS0EomXgDxBEYtPNTG0_x443SFVFYaSKbmBtOfZL65ETD3amqD_WH-iPkTJp1SJWtux773tHl5D3jK4YKHa8Sbs82LjapgFXlFOpdPOCHDINfCk5hZdP7gfkTSkbSmtopHxNDoCCriUXh2S17rc5XaOvYhjQ5spFW0roAuaqTx5j9TuMV9X3mzLmu9v-LXnV2Vjw3XwuyM-zLz9Ovy3PL76uT0_Ol06oely2rOMoUbZaCOppp4RjVmrZgFfcA-8Atapdza2UNaW8a0XrGdOSMq2c9rAgH_e525iKmVGL4QwmCMaATYr1XuGT3ZhtDr3NNybZYP4-pHxpbB6Di2gkWPBWoYDGCaoaCxJU0ygFaKnlOGV9nqft2h69w2HMNj4Lff4zhCtzma6N5KyhE9WCHM0BOf3aYRlNH4rDGO2AabffGygHqibpp3-k_6cTe5XLqZSM3eMyjJr7-h9c5r5-M9c_2T48BXk0PfQNfwBL5qyG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130051131</pqid></control><display><type>article</type><title>Improved linear classifier model with Nyström</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Changming ; Ji, Xiang ; Chen, Chao ; Zhou, Rigui ; Wei, Lai ; Zhang, Xiafen</creator><contributor>Agudo, Antonio</contributor><creatorcontrib>Zhu, Changming ; Ji, Xiang ; Chen, Chao ; Zhou, Rigui ; Wei, Lai ; Zhang, Xiafen ; Agudo, Antonio</creatorcontrib><description>Most data sets consist of interlaced-distributed samples from multiple classes and since these samples always cannot be classified correctly by a linear hyperplane, so we name them nonlinearly separable data sets and corresponding classifiers are named nonlinear classifiers. Traditional nonlinear classifiers adopt kernel functions to generate kernel matrices and then get optimal classifier parameters with the solution of these matrices. But computing and storing kernel matrices brings high computational and space complexities. Since INMKMHKS adopts Nyström approximation technique and NysCK changes nonlinearly separable data to linearly ones so as to reduce the complexities, we combines ideas of them to develop an improved NysCK (INysCK). Moreover, we extend INysCK into multi-view applications and propose multi-view INysCK (MINysCK). Related experiments validate the effectiveness of them in terms of accuracy, convergence, Rademacher complexity, etc.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0206798</identifier><identifier>PMID: 30395624</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Archives &amp; records ; Artificial intelligence ; Classification ; Classification - methods ; Classifiers ; Clustering ; Computer and Information Sciences ; Computer applications ; Computer Simulation ; Data Interpretation, Statistical ; Databases, Factual - statistics &amp; numerical data ; Datasets ; Engineering ; Engineering and Technology ; Handwriting ; Humans ; Hyperplanes ; International conferences ; Kernel functions ; Knowledge management ; Linear Models ; Medicine and Health Sciences ; Methods ; Nonlinear Dynamics ; Pattern recognition ; Physical Sciences ; Research and Analysis Methods ; Support Vector Machine</subject><ispartof>PloS one, 2018-11, Vol.13 (11), p.e0206798-e0206798</ispartof><rights>2018 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Zhu et al 2018 Zhu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c475t-b1f2e6e6b9440d0f74c1a69683d72d32f3e975c52a665002fb4bd11960197c9d3</cites><orcidid>0000-0001-8039-5601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218068/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218068/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30395624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Agudo, Antonio</contributor><creatorcontrib>Zhu, Changming</creatorcontrib><creatorcontrib>Ji, Xiang</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Zhou, Rigui</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>Zhang, Xiafen</creatorcontrib><title>Improved linear classifier model with Nyström</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Most data sets consist of interlaced-distributed samples from multiple classes and since these samples always cannot be classified correctly by a linear hyperplane, so we name them nonlinearly separable data sets and corresponding classifiers are named nonlinear classifiers. Traditional nonlinear classifiers adopt kernel functions to generate kernel matrices and then get optimal classifier parameters with the solution of these matrices. But computing and storing kernel matrices brings high computational and space complexities. Since INMKMHKS adopts Nyström approximation technique and NysCK changes nonlinearly separable data to linearly ones so as to reduce the complexities, we combines ideas of them to develop an improved NysCK (INysCK). Moreover, we extend INysCK into multi-view applications and propose multi-view INysCK (MINysCK). Related experiments validate the effectiveness of them in terms of accuracy, convergence, Rademacher complexity, etc.</description><subject>Algorithms</subject><subject>Archives &amp; records</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Classification - methods</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Handwriting</subject><subject>Humans</subject><subject>Hyperplanes</subject><subject>International conferences</subject><subject>Kernel functions</subject><subject>Knowledge management</subject><subject>Linear Models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Nonlinear Dynamics</subject><subject>Pattern recognition</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Support Vector Machine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkcFu1DAURS0EomXgDxBEYtPNTG0_x443SFVFYaSKbmBtOfZL65ETD3amqD_WH-iPkTJp1SJWtux773tHl5D3jK4YKHa8Sbs82LjapgFXlFOpdPOCHDINfCk5hZdP7gfkTSkbSmtopHxNDoCCriUXh2S17rc5XaOvYhjQ5spFW0roAuaqTx5j9TuMV9X3mzLmu9v-LXnV2Vjw3XwuyM-zLz9Ovy3PL76uT0_Ol06oely2rOMoUbZaCOppp4RjVmrZgFfcA-8Atapdza2UNaW8a0XrGdOSMq2c9rAgH_e525iKmVGL4QwmCMaATYr1XuGT3ZhtDr3NNybZYP4-pHxpbB6Di2gkWPBWoYDGCaoaCxJU0ygFaKnlOGV9nqft2h69w2HMNj4Lff4zhCtzma6N5KyhE9WCHM0BOf3aYRlNH4rDGO2AabffGygHqibpp3-k_6cTe5XLqZSM3eMyjJr7-h9c5r5-M9c_2T48BXk0PfQNfwBL5qyG</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Zhu, Changming</creator><creator>Ji, Xiang</creator><creator>Chen, Chao</creator><creator>Zhou, Rigui</creator><creator>Wei, Lai</creator><creator>Zhang, Xiafen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8039-5601</orcidid></search><sort><creationdate>20181105</creationdate><title>Improved linear classifier model with Nyström</title><author>Zhu, Changming ; Ji, Xiang ; Chen, Chao ; Zhou, Rigui ; Wei, Lai ; Zhang, Xiafen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-b1f2e6e6b9440d0f74c1a69683d72d32f3e975c52a665002fb4bd11960197c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Archives &amp; records</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Classification - methods</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Handwriting</topic><topic>Humans</topic><topic>Hyperplanes</topic><topic>International conferences</topic><topic>Kernel functions</topic><topic>Knowledge management</topic><topic>Linear Models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Nonlinear Dynamics</topic><topic>Pattern recognition</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Changming</creatorcontrib><creatorcontrib>Ji, Xiang</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Zhou, Rigui</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>Zhang, Xiafen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Changming</au><au>Ji, Xiang</au><au>Chen, Chao</au><au>Zhou, Rigui</au><au>Wei, Lai</au><au>Zhang, Xiafen</au><au>Agudo, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved linear classifier model with Nyström</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-11-05</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>e0206798</spage><epage>e0206798</epage><pages>e0206798-e0206798</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Most data sets consist of interlaced-distributed samples from multiple classes and since these samples always cannot be classified correctly by a linear hyperplane, so we name them nonlinearly separable data sets and corresponding classifiers are named nonlinear classifiers. Traditional nonlinear classifiers adopt kernel functions to generate kernel matrices and then get optimal classifier parameters with the solution of these matrices. But computing and storing kernel matrices brings high computational and space complexities. Since INMKMHKS adopts Nyström approximation technique and NysCK changes nonlinearly separable data to linearly ones so as to reduce the complexities, we combines ideas of them to develop an improved NysCK (INysCK). Moreover, we extend INysCK into multi-view applications and propose multi-view INysCK (MINysCK). Related experiments validate the effectiveness of them in terms of accuracy, convergence, Rademacher complexity, etc.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30395624</pmid><doi>10.1371/journal.pone.0206798</doi><orcidid>https://orcid.org/0000-0001-8039-5601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-11, Vol.13 (11), p.e0206798-e0206798
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2130051131
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Archives & records
Artificial intelligence
Classification
Classification - methods
Classifiers
Clustering
Computer and Information Sciences
Computer applications
Computer Simulation
Data Interpretation, Statistical
Databases, Factual - statistics & numerical data
Datasets
Engineering
Engineering and Technology
Handwriting
Humans
Hyperplanes
International conferences
Kernel functions
Knowledge management
Linear Models
Medicine and Health Sciences
Methods
Nonlinear Dynamics
Pattern recognition
Physical Sciences
Research and Analysis Methods
Support Vector Machine
title Improved linear classifier model with Nyström
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20linear%20classifier%20model%20with%20Nystr%C3%B6m&rft.jtitle=PloS%20one&rft.au=Zhu,%20Changming&rft.date=2018-11-05&rft.volume=13&rft.issue=11&rft.spage=e0206798&rft.epage=e0206798&rft.pages=e0206798-e0206798&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0206798&rft_dat=%3Cproquest_plos_%3E2130302307%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130051131&rft_id=info:pmid/30395624&rft_doaj_id=oai_doaj_org_article_63a3da7e438c4078a363788773ea0a2e&rfr_iscdi=true