Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments
Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a uniqu...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-11, Vol.13 (11), p.e0206223-e0206223 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0206223 |
---|---|
container_issue | 11 |
container_start_page | e0206223 |
container_title | PloS one |
container_volume | 13 |
creator | Yu, Jong W Bhattacharya, Sabyasachi Yanamandra, Niranjan Kilian, David Shi, Hong Yadavilli, Sapna Katlinskaya, Yuliya Kaczynski, Heather Conner, Michael Benson, William Hahn, Ashleigh Seestaller-Wehr, Laura Bi, Meixia Vitali, Nicholas J Tsvetkov, Lyuben Halsey, Wendy Hughes, Ashley Traini, Christopher Zhou, Hui Jing, Junping Lee, Tae Figueroa, David J Brett, Sara Hopson, Christopher B Smothers, James F Hoos, Axel Srinivasan, Roopa |
description | Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective. |
doi_str_mv | 10.1371/journal.pone.0206223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2128533386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e5e09f3952c4542877ca7afcf5e271e</doaj_id><sourcerecordid>2129541137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-c2c4727dbe508212a23b7619f6e40c31e0fc0eac4aa0c290fe551f06db0f05143</originalsourceid><addsrcrecordid>eNptkl1rFTEQhhdRbK3-A9GAN97sMR-b_bgRpKgtFLyp1yEnmezJcZOsyW7l_B9_qNmebWmLEEiYPPPOvMMUxVuCN4Q15NM-zNHLYTMGDxtMcU0pe1acko7RsqaYPX_wPilepbTHmLO2rl8WJwyzts0qp8Xf69mFWFrnZg9ojMHYwfoeBYPcHG2OpYPvwYNVaFpQ5IKGISGZDzJROvgT4i80BdTPVgNyoHbS2zTlhDTN2kIGvc7SoK2a0LSDKMcDipBy5wmQ9UgvuF8-jxWsigH8jY3BO_BTel28MHJI8Ga9z4qf375en1-UVz--X55_uSoVp_VUKqqqhjZ6Cxy3lFBJ2bapSWdqqLBiBLBRGKSqpMSKdtgA58TgWm-xwZxU7Kx4f9Qdh5DEOuAkslTLGcuzy8TlkdBB7sUYrZPxIIK04jYQYi9kzNYHEB1wwJ1hHc9t8Yq2TaNkI40yHGhDIGt9XqvNWwdaZadRDo9EH_94uxN9uBE1JRUnJAt8XAVi-D1DmoSzScEwSA9hvu2741UGm4x-eIL-3111pPL8U4pg7pshWCxLd5cllqUT69LltHcPjdwn3W0Z-wdyItqI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128533386</pqid></control><display><type>article</type><title>Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Jong W ; Bhattacharya, Sabyasachi ; Yanamandra, Niranjan ; Kilian, David ; Shi, Hong ; Yadavilli, Sapna ; Katlinskaya, Yuliya ; Kaczynski, Heather ; Conner, Michael ; Benson, William ; Hahn, Ashleigh ; Seestaller-Wehr, Laura ; Bi, Meixia ; Vitali, Nicholas J ; Tsvetkov, Lyuben ; Halsey, Wendy ; Hughes, Ashley ; Traini, Christopher ; Zhou, Hui ; Jing, Junping ; Lee, Tae ; Figueroa, David J ; Brett, Sara ; Hopson, Christopher B ; Smothers, James F ; Hoos, Axel ; Srinivasan, Roopa</creator><creatorcontrib>Yu, Jong W ; Bhattacharya, Sabyasachi ; Yanamandra, Niranjan ; Kilian, David ; Shi, Hong ; Yadavilli, Sapna ; Katlinskaya, Yuliya ; Kaczynski, Heather ; Conner, Michael ; Benson, William ; Hahn, Ashleigh ; Seestaller-Wehr, Laura ; Bi, Meixia ; Vitali, Nicholas J ; Tsvetkov, Lyuben ; Halsey, Wendy ; Hughes, Ashley ; Traini, Christopher ; Zhou, Hui ; Jing, Junping ; Lee, Tae ; Figueroa, David J ; Brett, Sara ; Hopson, Christopher B ; Smothers, James F ; Hoos, Axel ; Srinivasan, Roopa</creatorcontrib><description>Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0206223</identifier><identifier>PMID: 30388137</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Anticancer properties ; Antigen presentation ; Biology and Life Sciences ; Cancer ; Cancer immunotherapy ; Cancer therapies ; CD8 antigen ; Cell size ; Chemokines ; Drug resistance ; Fibroblasts ; Immunology ; Immunotherapy ; Implantation ; Infiltration ; Lung cancer ; Lymphocytes ; Lymphocytes T ; Mathematical models ; Medical prognosis ; Medicine and Health Sciences ; Melanoma ; Metastases ; Microenvironments ; Oncology ; Populations ; R&D ; Regulatory sequences ; Research & development ; Solid tumors ; Suppressor cells ; Surgical implants ; Tumor cell lines ; Tumors ; Viral infections</subject><ispartof>PloS one, 2018-11, Vol.13 (11), p.e0206223-e0206223</ispartof><rights>2018 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Yu et al 2018 Yu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-c2c4727dbe508212a23b7619f6e40c31e0fc0eac4aa0c290fe551f06db0f05143</citedby><cites>FETCH-LOGICAL-c526t-c2c4727dbe508212a23b7619f6e40c31e0fc0eac4aa0c290fe551f06db0f05143</cites><orcidid>0000-0003-4602-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214511/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214511/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30388137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jong W</creatorcontrib><creatorcontrib>Bhattacharya, Sabyasachi</creatorcontrib><creatorcontrib>Yanamandra, Niranjan</creatorcontrib><creatorcontrib>Kilian, David</creatorcontrib><creatorcontrib>Shi, Hong</creatorcontrib><creatorcontrib>Yadavilli, Sapna</creatorcontrib><creatorcontrib>Katlinskaya, Yuliya</creatorcontrib><creatorcontrib>Kaczynski, Heather</creatorcontrib><creatorcontrib>Conner, Michael</creatorcontrib><creatorcontrib>Benson, William</creatorcontrib><creatorcontrib>Hahn, Ashleigh</creatorcontrib><creatorcontrib>Seestaller-Wehr, Laura</creatorcontrib><creatorcontrib>Bi, Meixia</creatorcontrib><creatorcontrib>Vitali, Nicholas J</creatorcontrib><creatorcontrib>Tsvetkov, Lyuben</creatorcontrib><creatorcontrib>Halsey, Wendy</creatorcontrib><creatorcontrib>Hughes, Ashley</creatorcontrib><creatorcontrib>Traini, Christopher</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Jing, Junping</creatorcontrib><creatorcontrib>Lee, Tae</creatorcontrib><creatorcontrib>Figueroa, David J</creatorcontrib><creatorcontrib>Brett, Sara</creatorcontrib><creatorcontrib>Hopson, Christopher B</creatorcontrib><creatorcontrib>Smothers, James F</creatorcontrib><creatorcontrib>Hoos, Axel</creatorcontrib><creatorcontrib>Srinivasan, Roopa</creatorcontrib><title>Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.</description><subject>Animal models</subject><subject>Anticancer properties</subject><subject>Antigen presentation</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer therapies</subject><subject>CD8 antigen</subject><subject>Cell size</subject><subject>Chemokines</subject><subject>Drug resistance</subject><subject>Fibroblasts</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Implantation</subject><subject>Infiltration</subject><subject>Lung cancer</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mathematical models</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Microenvironments</subject><subject>Oncology</subject><subject>Populations</subject><subject>R&D</subject><subject>Regulatory sequences</subject><subject>Research & development</subject><subject>Solid tumors</subject><subject>Suppressor cells</subject><subject>Surgical implants</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Viral infections</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFTEQhhdRbK3-A9GAN97sMR-b_bgRpKgtFLyp1yEnmezJcZOsyW7l_B9_qNmebWmLEEiYPPPOvMMUxVuCN4Q15NM-zNHLYTMGDxtMcU0pe1acko7RsqaYPX_wPilepbTHmLO2rl8WJwyzts0qp8Xf69mFWFrnZg9ojMHYwfoeBYPcHG2OpYPvwYNVaFpQ5IKGISGZDzJROvgT4i80BdTPVgNyoHbS2zTlhDTN2kIGvc7SoK2a0LSDKMcDipBy5wmQ9UgvuF8-jxWsigH8jY3BO_BTel28MHJI8Ga9z4qf375en1-UVz--X55_uSoVp_VUKqqqhjZ6Cxy3lFBJ2bapSWdqqLBiBLBRGKSqpMSKdtgA58TgWm-xwZxU7Kx4f9Qdh5DEOuAkslTLGcuzy8TlkdBB7sUYrZPxIIK04jYQYi9kzNYHEB1wwJ1hHc9t8Yq2TaNkI40yHGhDIGt9XqvNWwdaZadRDo9EH_94uxN9uBE1JRUnJAt8XAVi-D1DmoSzScEwSA9hvu2741UGm4x-eIL-3111pPL8U4pg7pshWCxLd5cllqUT69LltHcPjdwn3W0Z-wdyItqI</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Yu, Jong W</creator><creator>Bhattacharya, Sabyasachi</creator><creator>Yanamandra, Niranjan</creator><creator>Kilian, David</creator><creator>Shi, Hong</creator><creator>Yadavilli, Sapna</creator><creator>Katlinskaya, Yuliya</creator><creator>Kaczynski, Heather</creator><creator>Conner, Michael</creator><creator>Benson, William</creator><creator>Hahn, Ashleigh</creator><creator>Seestaller-Wehr, Laura</creator><creator>Bi, Meixia</creator><creator>Vitali, Nicholas J</creator><creator>Tsvetkov, Lyuben</creator><creator>Halsey, Wendy</creator><creator>Hughes, Ashley</creator><creator>Traini, Christopher</creator><creator>Zhou, Hui</creator><creator>Jing, Junping</creator><creator>Lee, Tae</creator><creator>Figueroa, David J</creator><creator>Brett, Sara</creator><creator>Hopson, Christopher B</creator><creator>Smothers, James F</creator><creator>Hoos, Axel</creator><creator>Srinivasan, Roopa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4602-3585</orcidid></search><sort><creationdate>20181102</creationdate><title>Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments</title><author>Yu, Jong W ; Bhattacharya, Sabyasachi ; Yanamandra, Niranjan ; Kilian, David ; Shi, Hong ; Yadavilli, Sapna ; Katlinskaya, Yuliya ; Kaczynski, Heather ; Conner, Michael ; Benson, William ; Hahn, Ashleigh ; Seestaller-Wehr, Laura ; Bi, Meixia ; Vitali, Nicholas J ; Tsvetkov, Lyuben ; Halsey, Wendy ; Hughes, Ashley ; Traini, Christopher ; Zhou, Hui ; Jing, Junping ; Lee, Tae ; Figueroa, David J ; Brett, Sara ; Hopson, Christopher B ; Smothers, James F ; Hoos, Axel ; Srinivasan, Roopa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-c2c4727dbe508212a23b7619f6e40c31e0fc0eac4aa0c290fe551f06db0f05143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Anticancer properties</topic><topic>Antigen presentation</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer therapies</topic><topic>CD8 antigen</topic><topic>Cell size</topic><topic>Chemokines</topic><topic>Drug resistance</topic><topic>Fibroblasts</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Implantation</topic><topic>Infiltration</topic><topic>Lung cancer</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mathematical models</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Microenvironments</topic><topic>Oncology</topic><topic>Populations</topic><topic>R&D</topic><topic>Regulatory sequences</topic><topic>Research & development</topic><topic>Solid tumors</topic><topic>Suppressor cells</topic><topic>Surgical implants</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jong W</creatorcontrib><creatorcontrib>Bhattacharya, Sabyasachi</creatorcontrib><creatorcontrib>Yanamandra, Niranjan</creatorcontrib><creatorcontrib>Kilian, David</creatorcontrib><creatorcontrib>Shi, Hong</creatorcontrib><creatorcontrib>Yadavilli, Sapna</creatorcontrib><creatorcontrib>Katlinskaya, Yuliya</creatorcontrib><creatorcontrib>Kaczynski, Heather</creatorcontrib><creatorcontrib>Conner, Michael</creatorcontrib><creatorcontrib>Benson, William</creatorcontrib><creatorcontrib>Hahn, Ashleigh</creatorcontrib><creatorcontrib>Seestaller-Wehr, Laura</creatorcontrib><creatorcontrib>Bi, Meixia</creatorcontrib><creatorcontrib>Vitali, Nicholas J</creatorcontrib><creatorcontrib>Tsvetkov, Lyuben</creatorcontrib><creatorcontrib>Halsey, Wendy</creatorcontrib><creatorcontrib>Hughes, Ashley</creatorcontrib><creatorcontrib>Traini, Christopher</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Jing, Junping</creatorcontrib><creatorcontrib>Lee, Tae</creatorcontrib><creatorcontrib>Figueroa, David J</creatorcontrib><creatorcontrib>Brett, Sara</creatorcontrib><creatorcontrib>Hopson, Christopher B</creatorcontrib><creatorcontrib>Smothers, James F</creatorcontrib><creatorcontrib>Hoos, Axel</creatorcontrib><creatorcontrib>Srinivasan, Roopa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jong W</au><au>Bhattacharya, Sabyasachi</au><au>Yanamandra, Niranjan</au><au>Kilian, David</au><au>Shi, Hong</au><au>Yadavilli, Sapna</au><au>Katlinskaya, Yuliya</au><au>Kaczynski, Heather</au><au>Conner, Michael</au><au>Benson, William</au><au>Hahn, Ashleigh</au><au>Seestaller-Wehr, Laura</au><au>Bi, Meixia</au><au>Vitali, Nicholas J</au><au>Tsvetkov, Lyuben</au><au>Halsey, Wendy</au><au>Hughes, Ashley</au><au>Traini, Christopher</au><au>Zhou, Hui</au><au>Jing, Junping</au><au>Lee, Tae</au><au>Figueroa, David J</au><au>Brett, Sara</au><au>Hopson, Christopher B</au><au>Smothers, James F</au><au>Hoos, Axel</au><au>Srinivasan, Roopa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>e0206223</spage><epage>e0206223</epage><pages>e0206223-e0206223</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30388137</pmid><doi>10.1371/journal.pone.0206223</doi><orcidid>https://orcid.org/0000-0003-4602-3585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-11, Vol.13 (11), p.e0206223-e0206223 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2128533386 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal models Anticancer properties Antigen presentation Biology and Life Sciences Cancer Cancer immunotherapy Cancer therapies CD8 antigen Cell size Chemokines Drug resistance Fibroblasts Immunology Immunotherapy Implantation Infiltration Lung cancer Lymphocytes Lymphocytes T Mathematical models Medical prognosis Medicine and Health Sciences Melanoma Metastases Microenvironments Oncology Populations R&D Regulatory sequences Research & development Solid tumors Suppressor cells Surgical implants Tumor cell lines Tumors Viral infections |
title | Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor-immune%20profiling%20of%20murine%20syngeneic%20tumor%20models%20as%20a%20framework%20to%20guide%20mechanistic%20studies%20and%20predict%20therapy%20response%20in%20distinct%20tumor%20microenvironments&rft.jtitle=PloS%20one&rft.au=Yu,%20Jong%20W&rft.date=2018-11-02&rft.volume=13&rft.issue=11&rft.spage=e0206223&rft.epage=e0206223&rft.pages=e0206223-e0206223&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0206223&rft_dat=%3Cproquest_plos_%3E2129541137%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128533386&rft_id=info:pmid/30388137&rft_doaj_id=oai_doaj_org_article_9e5e09f3952c4542877ca7afcf5e271e&rfr_iscdi=true |