Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin

Cold atmospheric-pressure plasma (CAP) is a relatively new method used for bacterial inactivation. CAP is ionized gas that can be generated by applying an electric current to air or a feeding gas. It contains reactive species and emits UV radiation, which have antibacterial activity. Previous data s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-10, Vol.13 (10), p.e0206530-e0206530
Hauptverfasser: Yau, Ka Pui Sharon, Murphy, Anthony B, Zhong, Ling, Mai-Prochnow, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0206530
container_issue 10
container_start_page e0206530
container_title PloS one
container_volume 13
creator Yau, Ka Pui Sharon
Murphy, Anthony B
Zhong, Ling
Mai-Prochnow, Anne
description Cold atmospheric-pressure plasma (CAP) is a relatively new method used for bacterial inactivation. CAP is ionized gas that can be generated by applying an electric current to air or a feeding gas. It contains reactive species and emits UV radiation, which have antibacterial activity. Previous data suggests that CAP is effective in microbial inactivation and can decontaminate and sterilize surfaces, but its exact mode of action is still under debate. This study demonstrates the effect of CAP on the whole proteome of Pseudomonas aeruginosa PAO1 biofilms, which is a dominant pathogen in cystic fibrosis and medical device-related infections. Liquid chromatography-mass spectrometry (LC-MS) was used to identify differentially regulated proteins of whole cell P. aeruginosa extracts. A total of 16 proteins were identified to be affected by plasma treatment compared to the control. Eight of the identified proteins have functions in transcription and translation and their expression changes are likely to be part of a general physiological response instead of a CAP-specific adaptation. However, CAP also affected bacterioferritin (Bfr), Isocitrate dehydrogenase (Idh), Trigger factor (Tig) and a chemotaxis protein, which may be involved in P. aeruginosa's specific response to CAP. We confirm that bacterioferritin B plays a role in the bacterial response to CAP because ΔbfrB mutants of both PAO1 and PA14 are more susceptible to plasma-induced cell-death than their corresponding wild-type strains. To our knowledge, this is the first study showing the effect of plasma on the whole proteome of a pathogenic microorganism. It will help our understanding of the mode of action of CAP-mediated bacterial inactivation and thus support a safe and effective routine use of CAP in clinical and industrial settings.
doi_str_mv 10.1371/journal.pone.0206530
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2125646976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A559942275</galeid><doaj_id>oai_doaj_org_article_42f7293385f64cb5a28a2ff6d360ffa0</doaj_id><sourcerecordid>A559942275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4a58fbab123d845f393514a6a2785ab9bc4cc7f2569f3e1e4f2c379381b21dfa3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDgujFjGnSpO2NsAx-DCysrB94F07TZCZD2swmqei_N93pLlPZC8lFwsnzvic5ycmy5zle5rTM3-3c4Huwy73r1RITzBnFD7LTvKZkwQmmD4_WJ9mTEHYYM1px_jg7oZhyxhg9zX6unG3R3kLoACmtlYzI9ShuFdp7F5XrFHIafQlqaF3neggIlB82pncB0AJdOauQdh41IKPyxmnlvYmmf5o90mCDejbNZ9n3jx--rT4vLi4_rVfnFwvJaxIXBbBKN9DkhLZVwTStKcsL4EDKikFTN7KQstSE8VpTlatCE0nLmlZ5Q_JWAz3LXh5899YFMRUlCJInScHrkidifSBaBzux96YD_0c4MOIm4PxGgI9GWiUKoktSU1oxzQvZMCAVEK15SznWGnDyej9lG5pOtVL10YOdmc53erMVG_dLjK-QbJPBm8nAu-tBhSg6E6SyFnrlhptz8xrjkoy5Xv2D3n-7idpAuoDptUt55Wgqzhmr64KQcky7vIdKo1WdkekHaZPiM8HbmSAxUf2OGxhCEOuvV__PXv6Ys6-P2K0CG7fB2SEa14c5WBxA6V0IXum7IudYjA1wWw0xNoCYGiDJXhw_0J3o9sfTv1HyAAI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125646976</pqid></control><display><type>article</type><title>Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yau, Ka Pui Sharon ; Murphy, Anthony B ; Zhong, Ling ; Mai-Prochnow, Anne</creator><contributor>Kaushik, Nagendra Kumar</contributor><creatorcontrib>Yau, Ka Pui Sharon ; Murphy, Anthony B ; Zhong, Ling ; Mai-Prochnow, Anne ; Kaushik, Nagendra Kumar</creatorcontrib><description>Cold atmospheric-pressure plasma (CAP) is a relatively new method used for bacterial inactivation. CAP is ionized gas that can be generated by applying an electric current to air or a feeding gas. It contains reactive species and emits UV radiation, which have antibacterial activity. Previous data suggests that CAP is effective in microbial inactivation and can decontaminate and sterilize surfaces, but its exact mode of action is still under debate. This study demonstrates the effect of CAP on the whole proteome of Pseudomonas aeruginosa PAO1 biofilms, which is a dominant pathogen in cystic fibrosis and medical device-related infections. Liquid chromatography-mass spectrometry (LC-MS) was used to identify differentially regulated proteins of whole cell P. aeruginosa extracts. A total of 16 proteins were identified to be affected by plasma treatment compared to the control. Eight of the identified proteins have functions in transcription and translation and their expression changes are likely to be part of a general physiological response instead of a CAP-specific adaptation. However, CAP also affected bacterioferritin (Bfr), Isocitrate dehydrogenase (Idh), Trigger factor (Tig) and a chemotaxis protein, which may be involved in P. aeruginosa's specific response to CAP. We confirm that bacterioferritin B plays a role in the bacterial response to CAP because ΔbfrB mutants of both PAO1 and PA14 are more susceptible to plasma-induced cell-death than their corresponding wild-type strains. To our knowledge, this is the first study showing the effect of plasma on the whole proteome of a pathogenic microorganism. It will help our understanding of the mode of action of CAP-mediated bacterial inactivation and thus support a safe and effective routine use of CAP in clinical and industrial settings.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0206530</identifier><identifier>PMID: 30365553</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibacterial activity ; Antibiotics ; Apoptosis ; Atmospheric pressure ; Bacteria ; Bacterial infections ; Bacterioferritin ; Biofilms ; Biology and Life Sciences ; Cell death ; Chemotaxis ; Chromatography ; Cold plasmas ; Cold pressing ; Cystic fibrosis ; Deactivation ; Decontamination ; Disease control ; Drug resistance ; Electric currents ; Gases ; Genetic aspects ; Genomes ; Genomics ; Health aspects ; Inactivation ; Infections ; Influence ; Isocitrate dehydrogenase ; Liquid chromatography ; Manufacturing ; Mass spectrometry ; Mass spectroscopy ; Medical devices ; Medical electronics ; Medical equipment ; Medicine and Health Sciences ; Microbial mats ; Microorganisms ; Mode of action ; Mutants ; Oxidative stress ; Pathogens ; Physiological aspects ; Plasma ; Plasmas (Ionized gases) ; Proteins ; Proteomes ; Proteomics ; Pseudomonas aeruginosa ; Radiation ; Stress response ; Transcription ; Trigger factor ; Ultraviolet radiation</subject><ispartof>PloS one, 2018-10, Vol.13 (10), p.e0206530-e0206530</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Yau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Yau et al 2018 Yau et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4a58fbab123d845f393514a6a2785ab9bc4cc7f2569f3e1e4f2c379381b21dfa3</citedby><cites>FETCH-LOGICAL-c692t-4a58fbab123d845f393514a6a2785ab9bc4cc7f2569f3e1e4f2c379381b21dfa3</cites><orcidid>0000-0003-0136-9144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203385/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203385/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30365553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kaushik, Nagendra Kumar</contributor><creatorcontrib>Yau, Ka Pui Sharon</creatorcontrib><creatorcontrib>Murphy, Anthony B</creatorcontrib><creatorcontrib>Zhong, Ling</creatorcontrib><creatorcontrib>Mai-Prochnow, Anne</creatorcontrib><title>Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cold atmospheric-pressure plasma (CAP) is a relatively new method used for bacterial inactivation. CAP is ionized gas that can be generated by applying an electric current to air or a feeding gas. It contains reactive species and emits UV radiation, which have antibacterial activity. Previous data suggests that CAP is effective in microbial inactivation and can decontaminate and sterilize surfaces, but its exact mode of action is still under debate. This study demonstrates the effect of CAP on the whole proteome of Pseudomonas aeruginosa PAO1 biofilms, which is a dominant pathogen in cystic fibrosis and medical device-related infections. Liquid chromatography-mass spectrometry (LC-MS) was used to identify differentially regulated proteins of whole cell P. aeruginosa extracts. A total of 16 proteins were identified to be affected by plasma treatment compared to the control. Eight of the identified proteins have functions in transcription and translation and their expression changes are likely to be part of a general physiological response instead of a CAP-specific adaptation. However, CAP also affected bacterioferritin (Bfr), Isocitrate dehydrogenase (Idh), Trigger factor (Tig) and a chemotaxis protein, which may be involved in P. aeruginosa's specific response to CAP. We confirm that bacterioferritin B plays a role in the bacterial response to CAP because ΔbfrB mutants of both PAO1 and PA14 are more susceptible to plasma-induced cell-death than their corresponding wild-type strains. To our knowledge, this is the first study showing the effect of plasma on the whole proteome of a pathogenic microorganism. It will help our understanding of the mode of action of CAP-mediated bacterial inactivation and thus support a safe and effective routine use of CAP in clinical and industrial settings.</description><subject>Antibacterial activity</subject><subject>Antibiotics</subject><subject>Apoptosis</subject><subject>Atmospheric pressure</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bacterioferritin</subject><subject>Biofilms</subject><subject>Biology and Life Sciences</subject><subject>Cell death</subject><subject>Chemotaxis</subject><subject>Chromatography</subject><subject>Cold plasmas</subject><subject>Cold pressing</subject><subject>Cystic fibrosis</subject><subject>Deactivation</subject><subject>Decontamination</subject><subject>Disease control</subject><subject>Drug resistance</subject><subject>Electric currents</subject><subject>Gases</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Inactivation</subject><subject>Infections</subject><subject>Influence</subject><subject>Isocitrate dehydrogenase</subject><subject>Liquid chromatography</subject><subject>Manufacturing</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical devices</subject><subject>Medical electronics</subject><subject>Medical equipment</subject><subject>Medicine and Health Sciences</subject><subject>Microbial mats</subject><subject>Microorganisms</subject><subject>Mode of action</subject><subject>Mutants</subject><subject>Oxidative stress</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Plasma</subject><subject>Plasmas (Ionized gases)</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Pseudomonas aeruginosa</subject><subject>Radiation</subject><subject>Stress response</subject><subject>Transcription</subject><subject>Trigger factor</subject><subject>Ultraviolet radiation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDgujFjGnSpO2NsAx-DCysrB94F07TZCZD2swmqei_N93pLlPZC8lFwsnzvic5ycmy5zle5rTM3-3c4Huwy73r1RITzBnFD7LTvKZkwQmmD4_WJ9mTEHYYM1px_jg7oZhyxhg9zX6unG3R3kLoACmtlYzI9ShuFdp7F5XrFHIafQlqaF3neggIlB82pncB0AJdOauQdh41IKPyxmnlvYmmf5o90mCDejbNZ9n3jx--rT4vLi4_rVfnFwvJaxIXBbBKN9DkhLZVwTStKcsL4EDKikFTN7KQstSE8VpTlatCE0nLmlZ5Q_JWAz3LXh5899YFMRUlCJInScHrkidifSBaBzux96YD_0c4MOIm4PxGgI9GWiUKoktSU1oxzQvZMCAVEK15SznWGnDyej9lG5pOtVL10YOdmc53erMVG_dLjK-QbJPBm8nAu-tBhSg6E6SyFnrlhptz8xrjkoy5Xv2D3n-7idpAuoDptUt55Wgqzhmr64KQcky7vIdKo1WdkekHaZPiM8HbmSAxUf2OGxhCEOuvV__PXv6Ys6-P2K0CG7fB2SEa14c5WBxA6V0IXum7IudYjA1wWw0xNoCYGiDJXhw_0J3o9sfTv1HyAAI</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Yau, Ka Pui Sharon</creator><creator>Murphy, Anthony B</creator><creator>Zhong, Ling</creator><creator>Mai-Prochnow, Anne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0136-9144</orcidid></search><sort><creationdate>20181026</creationdate><title>Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin</title><author>Yau, Ka Pui Sharon ; Murphy, Anthony B ; Zhong, Ling ; Mai-Prochnow, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4a58fbab123d845f393514a6a2785ab9bc4cc7f2569f3e1e4f2c379381b21dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibacterial activity</topic><topic>Antibiotics</topic><topic>Apoptosis</topic><topic>Atmospheric pressure</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bacterioferritin</topic><topic>Biofilms</topic><topic>Biology and Life Sciences</topic><topic>Cell death</topic><topic>Chemotaxis</topic><topic>Chromatography</topic><topic>Cold plasmas</topic><topic>Cold pressing</topic><topic>Cystic fibrosis</topic><topic>Deactivation</topic><topic>Decontamination</topic><topic>Disease control</topic><topic>Drug resistance</topic><topic>Electric currents</topic><topic>Gases</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Inactivation</topic><topic>Infections</topic><topic>Influence</topic><topic>Isocitrate dehydrogenase</topic><topic>Liquid chromatography</topic><topic>Manufacturing</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical devices</topic><topic>Medical electronics</topic><topic>Medical equipment</topic><topic>Medicine and Health Sciences</topic><topic>Microbial mats</topic><topic>Microorganisms</topic><topic>Mode of action</topic><topic>Mutants</topic><topic>Oxidative stress</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Plasma</topic><topic>Plasmas (Ionized gases)</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Pseudomonas aeruginosa</topic><topic>Radiation</topic><topic>Stress response</topic><topic>Transcription</topic><topic>Trigger factor</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yau, Ka Pui Sharon</creatorcontrib><creatorcontrib>Murphy, Anthony B</creatorcontrib><creatorcontrib>Zhong, Ling</creatorcontrib><creatorcontrib>Mai-Prochnow, Anne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yau, Ka Pui Sharon</au><au>Murphy, Anthony B</au><au>Zhong, Ling</au><au>Mai-Prochnow, Anne</au><au>Kaushik, Nagendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-10-26</date><risdate>2018</risdate><volume>13</volume><issue>10</issue><spage>e0206530</spage><epage>e0206530</epage><pages>e0206530-e0206530</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cold atmospheric-pressure plasma (CAP) is a relatively new method used for bacterial inactivation. CAP is ionized gas that can be generated by applying an electric current to air or a feeding gas. It contains reactive species and emits UV radiation, which have antibacterial activity. Previous data suggests that CAP is effective in microbial inactivation and can decontaminate and sterilize surfaces, but its exact mode of action is still under debate. This study demonstrates the effect of CAP on the whole proteome of Pseudomonas aeruginosa PAO1 biofilms, which is a dominant pathogen in cystic fibrosis and medical device-related infections. Liquid chromatography-mass spectrometry (LC-MS) was used to identify differentially regulated proteins of whole cell P. aeruginosa extracts. A total of 16 proteins were identified to be affected by plasma treatment compared to the control. Eight of the identified proteins have functions in transcription and translation and their expression changes are likely to be part of a general physiological response instead of a CAP-specific adaptation. However, CAP also affected bacterioferritin (Bfr), Isocitrate dehydrogenase (Idh), Trigger factor (Tig) and a chemotaxis protein, which may be involved in P. aeruginosa's specific response to CAP. We confirm that bacterioferritin B plays a role in the bacterial response to CAP because ΔbfrB mutants of both PAO1 and PA14 are more susceptible to plasma-induced cell-death than their corresponding wild-type strains. To our knowledge, this is the first study showing the effect of plasma on the whole proteome of a pathogenic microorganism. It will help our understanding of the mode of action of CAP-mediated bacterial inactivation and thus support a safe and effective routine use of CAP in clinical and industrial settings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30365553</pmid><doi>10.1371/journal.pone.0206530</doi><tpages>e0206530</tpages><orcidid>https://orcid.org/0000-0003-0136-9144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-10, Vol.13 (10), p.e0206530-e0206530
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2125646976
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antibacterial activity
Antibiotics
Apoptosis
Atmospheric pressure
Bacteria
Bacterial infections
Bacterioferritin
Biofilms
Biology and Life Sciences
Cell death
Chemotaxis
Chromatography
Cold plasmas
Cold pressing
Cystic fibrosis
Deactivation
Decontamination
Disease control
Drug resistance
Electric currents
Gases
Genetic aspects
Genomes
Genomics
Health aspects
Inactivation
Infections
Influence
Isocitrate dehydrogenase
Liquid chromatography
Manufacturing
Mass spectrometry
Mass spectroscopy
Medical devices
Medical electronics
Medical equipment
Medicine and Health Sciences
Microbial mats
Microorganisms
Mode of action
Mutants
Oxidative stress
Pathogens
Physiological aspects
Plasma
Plasmas (Ionized gases)
Proteins
Proteomes
Proteomics
Pseudomonas aeruginosa
Radiation
Stress response
Transcription
Trigger factor
Ultraviolet radiation
title Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20plasma%20effect%20on%20the%20proteome%20of%20Pseudomonas%20aeruginosa%20-%20Role%20for%20bacterioferritin&rft.jtitle=PloS%20one&rft.au=Yau,%20Ka%20Pui%20Sharon&rft.date=2018-10-26&rft.volume=13&rft.issue=10&rft.spage=e0206530&rft.epage=e0206530&rft.pages=e0206530-e0206530&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0206530&rft_dat=%3Cgale_plos_%3EA559942275%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125646976&rft_id=info:pmid/30365553&rft_galeid=A559942275&rft_doaj_id=oai_doaj_org_article_42f7293385f64cb5a28a2ff6d360ffa0&rfr_iscdi=true